V.P.\& R.P.T.P.Science College. Vallabh Vidyanagar. Internal Test B.Sc. Semester VI
 US06CMTH06 (Mechanics-2)

Saturday, $17^{\text {th }}$ March $2018 \quad 11.00$ a.m. to 12.30 p.m.

Que. 1 Fill in the blanks.
(1) If a particle slide down on a smooth incline plane starting from the rest then kinetic energy at time t is \qquad
(a) $m g h-m g x \sin \alpha$
(b) $m g x \sin \alpha$
(c) $m g h-m g x$
(d) $m g x$
(2) The equation of motion of a projectile with resistance for the forces along tangential direction is given by
(a) $m \ddot{x}+R \cos \theta=0$
(b) $m \ddot{y}+R \sin \theta+m g=0$
(c) $m v \frac{d v}{d s}+m g \sin \theta+R=0$
(d) $\frac{v^{2}}{\rho}+g \cos \theta=0$
(3) For the curve $u=\frac{1}{a} e^{n \theta}$, perpendicular distance from the centre to the tangent to the path is proportional to
(a) v
(b) $\frac{1}{v}$
(c) u^{3}
(d) $\frac{1}{u^{3}}$

Que. 2 Answer the following (Any Two)
(1) State and prove principle of angular momentum about a point.
(2) If R is maximum horizontal range of the projectile, prove that a point whose horizontal and vertical distances are $R / 2$ and $R / 4$ resp., lie on the path provided that the tangent of angle of projection is 1 or 3.
(3) In usual notation prove that $\left(\frac{d u}{d \theta}\right)^{2}+u^{2}=\frac{2(E-V)}{h^{2}}$.

Que. 3 (a) The rate of change of angular momentum of a system relative to the mass center is equal to the moment of the external forces about the mass center.
(b) State and prove principle of energy .

OR

Que. 3 (a) Obtain equation of motion of a particle in (i) tangent and normal form (ii) polar form.
(b) State and prove principle of conservation of energy for system of particle .

Que. 4 (a) A bomb is dropped vertically downward from rest under the force of gravity. The resistance of air is $m g c v^{2}$. Show that the velocity of a bomb is, $\sqrt{\frac{1-e^{-2 g h c}}{c}}$ when it strikes the ground. 4
(b) A particle just clear a wall of height b, at a distance a and and strikes the ground at a distance c, from the point of projection. Prove that the angle of projection is given by, $\alpha=\tan ^{-1}\left(\frac{b c}{a c-a^{2}}\right)$.

OR

Que. 4 (a) A particle of mass m is projected vertically upward in medium for which resistance R is $m k^{2} v^{2}$.If the initial velocity is v_{0} then show that the particle returns to the point of projection with velocity v_{1} such that $\frac{1}{v_{1}^{2}}=\frac{1}{v_{0}^{2}}+\frac{k^{2}}{g}$.
(b) For a particle, moving with resistance which is independent of height, prove that $\frac{1}{v} \frac{d v}{d \psi}=\tan h \psi+\phi(v)$.
Que. 5 (a) Obtain equation of orbit described under a central force varying directly as the distance, in the form $\frac{x^{2}}{a^{2}}+\frac{y^{2} k^{2}}{v_{0}^{2}}=1$, where v_{0} is the initial velocity of the particle in the direction of y -axis and $(a, 0)$ is the initial position of particle .
(b) State and prove the theorem of $K \ddot{O} N I G$.

OR

Que. 5 (a) In usual notation prove that the semi latus rectum and the eccentricity are given by $l=\frac{h^{2}}{\mu} ; e=\sqrt{1+\frac{2 E h}{\mu^{2}}} \quad$ respectively .

