	// <i>\&</i> /	.P. Scien
Subj	V.P. & R.P.T.P. Science College, V.V.Nagar Internal Test: 2017-18 ect : Mathematics US06CMTH03 Max. Marks : 25 Topology	IBRAR V. Naga
Date:	12/03/2018 Timing: 11:00 am - 12:30 pm	
Q: 1.	Answer the following by choosing correct answers from given choices.	3
[1]	In a topological space (X, \mathcal{T}) , a neighbourhood of a point is [A] \mathcal{T} -open [B] \mathcal{T} -closed [C] either open or closed [D] none	
[2]	If A is a dense subset of a topological space (X, \mathcal{T}) then [A] $A' = X$ [B] $A = X$ [C] $A^- = X$ [D] none	
[3]	If I is an open interval then the subspace (I, U_I) and (R, U) [A] both are compact [B] are homeomorphic [C] both are bounded [D] none	
) : 2.	Answer any TWO of the following.	4
[1]	Give an example of a Door Space	
[2]	Find the \mathcal{U} -closure of each of the following subsets of \mathbb{R} (a) \mathbb{R} (b) \emptyset	
[3]	Let $f: [1, 10] \rightarrow R$ be continuous on $[1, 10]$. Is $f([1, 10])$ connected?	
: 3 [A]	Let J be the set of all integers and \mathcal{J} be a collection of subsets G of J where $G \in \mathcal{J}$ whenever $G = \emptyset$ or $G \neq \emptyset$ and $p, p \pm 2, p \pm 4,, p \pm 2n,$ belong to G whenever $p \in G$. Prove that \mathcal{J} is a topology for J	3
[B]	Let (X, \mathcal{T}) be a topological space and let $J_n = \{1, 2, 3,, n\}$. If $F_1, F_2,, F_n$ are \mathcal{T} -closed subsets of X then prove that $\bigcup \{F_i i \in J\}$ is a \mathcal{T} -closed set	3
	OR	
: 3 [A]	If $\{G_{\alpha} \mid \alpha \in \Lambda\}$ is a collection of \mathcal{U} -open subsets of \mathbb{R} then prove that $\bigcup \{G_{\alpha} \mid \alpha \in \Lambda\}$ is a \mathcal{U} -open set	3
[B]	Let (X, \mathcal{T}) be a topological space and let A be a subset of X . Prove that A is \mathcal{T} -open set iff A contains a \mathcal{T} -neighbourhood of each of its points	3
: 4 [A]	Let (X, \mathcal{T}) be a topological space and $A \subset X$. Prove the following (i) A is \mathcal{T} -open iff $Int(A) = A$ (ii) $Int(A)$ is the largest open subset of A	3
[B]	Let (X, \mathcal{T}) be a topological space and let A be a subset of X and A' be the set of all cluster points of A . Prove that A is \mathcal{T} -closed iff $A' \subset A$	3

OR

Page 1 of 2

- **Q:** 4 [A] Let (X, \mathcal{T}) be a topological space and A be a subset of X. Prove that $A \cup A'$ is \mathcal{T} -closed
 - [B] Let (X, \mathcal{T}) be a topological space and let A be a subset of X. Then prove that $A^- = A \cup A'$.
- Q: 5. Prove that the space (R, U) is connected.

OR

- **Q:** 5 [A] Prove that if (X, \mathcal{T}) is disconnected then there is a nonempty proper subset of X that is both \mathcal{T} -open and \mathcal{T} -closed.
 - [B] Assuming that connectedness is a topological property prove that (R, \mathcal{U}) and (R, \mathcal{G}) are not homeomorphic where \mathcal{U} is usual topology for R and \mathcal{G} is defined as follows

 $G \in \mathcal{G}$ if either G empty or it is a nonempty subset of R such that for every $p \in G$ there is some $H = \{x \in R | a \leq x < b\}$ for a < b such that $p \in H \subset G$.

3

3

6

3

