V.P.\& R.P.T.P.Science College.Vallabh Vidyanagar.
Internal Test B.Sc. Semester VI
US06CMTH02 (Complex Analysis)

Tuesday, $13^{\text {th }}$ March 201811.00 a.m. to 12.30 p.m. Maximum Marks :25
Que. 1 Fill in the blanks.
(1) $f(z)=\left(x^{2}-y^{2}-2 y\right)+i(2 x-2 x y)$ can be expressed as $f(z)=$. \qquad
(a) $\bar{z}^{2}+2 z$
(b) $\bar{z}^{2}+i z$
(c) $\bar{z}^{2}-2 i z$
(d) $\bar{z}^{2}+2 i z$
(2) Singular point of $f(z)=\frac{z^{3}+i}{\left(z^{2}+3 z+2\right)}$ are $z=$ \qquad
(a) 1,2
(b) $1, i$
(c) $1,3, i$
(d) $-1,-2$
(3) $\exp (2 \pm 3 \pi i)=$ \qquad

(a) $-e^{2}$
(b) e^{2}
(c) e^{-2}
(d) $-e$

Que. 2 Answer the following (Any Two)
(1) By using definition of limit prove that $\lim _{z \rightarrow z_{0}}\left(z^{2}+c\right)=z_{0}^{2}+c$, where c is complex constant.
(2) Prove that in domain D, v is harmonic conjugate of u iff $-u$ is harmonic conjugate of v.
(3) Solve $e^{z}=-\sqrt{3}+i$.

Que. 3 (a) State and prove chain rule for differentiating composite functions.
(b) By using definition of limit prove that $\lim _{z \rightarrow(1-i)}(x+i(2 x+y))=1+i$.

OR

Que. 3 (a) Give an example of function such that its real and imaginary component have continuous partial derivative of all order at a point but the function is not differentiable at that point.Verify it.
(b) If $f(z)=\frac{x^{3} y(y-i x)}{z\left(x^{6}+y^{2}\right)}, z \neq 0, f(0)=0$. Is $\lim _{z \rightarrow 0} f(z)$ exists ?

Que. 4 (a) Let $f(z)=u(x, y)+i v(x, y)$ and $f^{\prime}(z)$ exist at $z_{0}=x_{0}+i y_{0}$.Prove that the first order partial derivatives of u and v must exist at (x_{0}, y_{0}) and they satisfies the Cauchy-Reimann equations $u_{x}=v_{y} ; u_{y}=-v_{x}$ at $\left(x_{0}, y_{0}\right)$. Does the converse of above result holds? Verify it.

Que. 4 (a) Find harmonic conjugate of $u(x, y)=\frac{\mathrm{OR}}{x^{2}+y^{2}}$.
(b) Prove that $f^{\prime}(z)$ and $f^{\prime \prime}(z)$ exist everywhere and find $f^{\prime \prime}(z)$ for $f(z)=\cos x \cosh y-i \sin x \sinh y$.

Que. 5 (a) Prove that $\cos z_{1}-\cos z_{2}=-2 \sin \left(\frac{z_{1}+z_{2}}{2}\right) \sin \left(\frac{z_{1}-z_{2}}{2}\right)$.
(b) Find all roots of $\cosh z=1 / 2$.

OR

Que. 5 (a) Prove that $|\sinh x| \leq|\cosh z| \leq \cosh x$.
(b) Prove that $\cos ^{-1} z$ is multiple valued function .

