## VP \& RPTP Science College-Vallabh Vidyanagar

## US05CPHY02 Internal Test 2017

## Date: $04 / 10 / 2017$ Wednesday Time: 11.00 am to 12.30 pm

Total Marks-25
Q-1 Multiple Choice Questions: [Attempt all]
(i) For matrices $A$ and $B$, product $A B$ is possible only if two matrices are $\qquad$ .
(a) $A_{m \times n}$ and $B_{n \times p}$
(b) $A_{\text {mxn }}$ and $B_{\operatorname{mxp}}$
(c) $A_{n x n}$ and $B_{m \times n}$
(d) $A_{m \times m}$ and $B_{n \times n}$
(ii) The amount of heat $\Delta H$ crossing an element of surface $\Delta S$ in time $\Delta t$ is given by
(a) $\Delta H=K \Delta t\left|\frac{d u}{d t}\right|$
(b) $\Delta H=K \Delta S\left|\frac{d u}{d t}\right|$
(c) $\quad \Delta H=K \Delta S \Delta t\left|\frac{d u}{d t}\right|$
(d) $\Delta H=K \frac{\Delta S}{\Delta t}\left|\frac{d u}{d t}\right|$
(iii) Shift operator $\mathrm{E}=$ $\qquad$ .
(a) $\nabla+1$
(b) $\Delta-1$
(c) $\Delta+1$
(d) $\delta+1$


Q-2 Answer the following questions in short [Attempt any two].
(a) If $u=3 x+2, v=y-5, w=z+3$, show that $u, v, w$ are orthogonal.
(b) Write sine series for $f(x)$, when $0 \leq x \leq \pi$.
(c) Convert $y=a x^{b}$ in to equivalent equation of a straight line.

Q-3 Derive expression of divergence in terms of orthogonal curvilinear coordinates.

Q-3 Discuss cylindrical co-ordinates as a special curvilinear system.
Q-4 Write the Fourier series for a periodic function $f(x)$ defined in the interval $[-\pi, \pi] .6$ Derive the coefficients $a_{0}, a_{n}$ and $b_{n}$ of the series.

## OR

Q-4 Derive one dimensional diffusion equation for one dimensional flow of electricity in a long insulated cable.

Q-5 Derive Newton's backward difference interpolation formula and evaluate $f(45)$ from the following table of values.

| $x$ | 10 | 20 | 30 | 40 | 50 |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $y=f(x)$ | 46 | 66 | 81 | 93 | 101 |
|  | OR |  |  |  |  |

Q-5 Find Lagrange's interpolation polynomial that fits the given data and evaluate $y=f(5)$.

| $x$ | 1 | 3 | 4 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| $y=f(x)$ | -3 | 0 | 30 | 132 |

