V.Nag

V.P.& R.P.T.P. Science College ,Vidyanagar. B.Sc.(SEMESTER - V) Internal Test MATHEMATICS : US05CMTH06 (Mechanics - 1) Date. 9/10/2017 ; Monday 11.00 a.m. to 12.30 p.m. Maximum Marks: 25

Que.1 Fill in the blanks.

- (1) Newton is unit of force in
- (a) C.G.S (b) F.P.S (c) M.K.S (d) None of this
- (2) A branch of mechanics which deals with the equilibrium of systems at rest is known as
 (a) dynamics
 (b) statics
 (c) motion
 (d) acceleration
- (3) If density ρ varies from point to point in a body, then the body is said to be (a) homogeneous (b) rigid (c) exact (d) heterogeneous
- Que.2 Answer the following (Any Two)
 - (1) State Fundamental laws of Newtonian Mechanics.
 - (2) ABCD is a square of side 2 unit, forces 1, 2, 3, 4 lb wt act along $\overline{AB}, \overline{CB}, \overline{DC}, \overline{DA}$ respectively. Find the algebraic sum of their moments about Center of a square.
 - (3) State and prove Pappu's theorem for plane curve.
- Que.3 (a) Find the component of gradient of V along a co-ordinate axis.
 - (b) Resolve the force of 100 gm wt into two components making an angle 60° and 30° on either side . 2

OR

- Que.3 (a) If resultant \bar{R} of two forces \bar{P} and \bar{Q} make an angle α with first force \bar{P} and β with the other force \bar{Q} then prove that (i) $P = \frac{R \sin \beta}{\sin(\alpha + \beta)}$ (ii) $Q = \frac{R \sin \alpha}{\sin(\alpha + \beta)}$.
 - (b) A uniformly accelerated automobile passes through two telephone poles with velocities 10 and 20 mph respectively. Calculate its velocity when it is half way between the poles.
- Que.4 (a) State and prove theorem of Varignon.
 - (b) The end of a rope 7 m long are attached to two pegs A and B, 5 m apart ,the line \overline{AB} being horizontal, A body of weight 500 gms hangs from the rope at a point 3 m from one end. What are the tensions in two part of the rope ?

OR

- Que.4 (a) State and prove necessary condition of equilibrium of system of particles in terms of moment.
 - (b) *O* is the circumcenter of the $\triangle ABC$. If forces \vec{P}, \vec{Q} and \vec{R} are acting along $\overline{OA}, \overline{OB}$ and \overline{OC} are in equilibrium. Show that $\frac{P}{a^2(b^2+c^2-a^2)} = \frac{Q}{b^2(a^2+c^2-b^2)} = \frac{R}{c^2(a^2+b^2-c^2)}$.
- Que.5 (a) Prove that the force of attraction of a thin spherical shell at any external point of shell is directed toward the centre and magnitude of force is GM/r^2 .
 - (b) In usual notations prove that $\delta W = X\delta x + Y\delta y + Z\delta z$.

OR

- Que.5 (a) Find the center of gravity of the area bounded by the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ in the first quadrant. 3
 - (b) A light rigid rod of length 2b terminated by heavy particles of weight w and W, is placed inside the smooth hemispherical bowl of radius a, which is fixed with its own rim horizontally. If the particle of weight w rests just below the rim then prove that $wa^2 = W(2b^2 a^2)$.

3

3

3

4

4

2

3

3

3

3

3