Que. 1 Fill in the blanks.
(1) Newton is unit of force in
(a) C.G.S
(b) F.P.S (c) M.K.S
(d) None of this
(2) A branch of mechanics which deals with the equilibrium of systems at rest is known as
(a) dynamics (b) statics
(c) motion
(d) acceleration
(3) If density ρ varies from point to point in a body, then the body is said to be
(a) homogeneous
(b) rigid
(c) exact
(d) heterogeneous

Que. 2 Answer the following (Any Two)
(1) State Fundamental laws of Newtonian Mechanics.
(2) ABCD is a square of side 2 unit, forces $1,2,3,4 \mathrm{lb} \mathrm{wt}$ act along $\overline{A B}, \overline{C B}, \overline{D C}, \overline{D A}$ respectively . Find the algebraic sum of their moments about Center of a square .
(3) State and prove Pappu's theorem for plane curve .

Que. 3 (a) Find the component of gradient of V along a co-ordinate axis.
(b) Resolve the force of 100 gm wt into two components making an angle 60° and 30° on either side

OR

Que. 3 (a) If resultant \bar{R} of two forces \bar{P} and \bar{Q} make an angle α with first force \bar{P} and β with the other force \bar{Q} then prove that (i) $P=\frac{R \sin \beta}{\sin (\alpha+\beta)}$
(ii) $Q=\frac{R \sin \alpha}{\sin (\alpha+\beta)}$.
(b) A uniformly accelerated automobile passes through two telephone poles with velocities 10 and 20 mph respectively. Calculate its velocity when it is half way between the poles.

Que. 4 (a) State and prove theorem of Varignon .
(b) The end of a rope 7 m long are attached to two pegs A and $\mathrm{B}, 5 \mathrm{~m}$ apart , the line $\overline{A B}$ being horizontal, A body of weight 500 gms hangs from the rope at a point 3 m from one end. What are the tensions in two part of the rope ?

OR

Que. 4 (a) State and prove necessary condition of equilibrium of system of particles in terms of moment.
(b) O is the circumcenter of the $\triangle A B C$. If forces \vec{P}, \vec{Q} and \vec{R} are acting along $\overline{O A}, \overline{O B}$ and $\overline{O C}$ are in equilibrium. Show that $\frac{P}{a^{2}\left(b^{2}+c^{2}-a^{2}\right)}=\frac{Q}{b^{2}\left(a^{2}+c^{2}-b^{2}\right)}=\frac{R}{c^{2}\left(a^{2}+b^{2}-c^{2}\right)}$.
Que. 5 (a) Prove that the force of attraction of a thin spherical shell at any external point of shell is directed toward the centre and magnitude of force is $G M / r^{2}$.
(b) In usual notations prove that $\delta W=X \delta x+Y \delta y+Z \delta z$.

OR

Que. 5 (a) Find the center of gravity of the area bounded by the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ in the first quadrant.
(b) A light rigid rod of length $2 b$ terminated by heavy particles of weight w and W, is placed inside the smooth hemispherical bowl of radius a,which is fixed with its own rim horizontally. If the particle of weight w rests just below the rim then prove that $w a^{2}=W\left(2 b^{2}-a^{2}\right)$.

