V.P.\& R.P.T.P.Science College,Vallabh Vidyanagar.
 B.Sc.(Semester - V) Internal Test
 US05CMTH05 (Number Theory)

Date. $7 / 10 / 2017$; Saturday 11.00 a.m. to 12.30 p.m. Maximum Marks: 25
Que. 1 Fill in the blanks.
(1) If a / b then $(a, b)=$ \qquad $\forall a, b \in \mathbb{Z}$.
(a) a
(b)
$|a|$
(c) $|b|$
(d) b
(2) $S(60)=$ \qquad
(a) 61
(b) 60
(c) 12
(d) 168

(3) Prove that every number containing more than three digits can be divided by 8 iff the number formed by \qquad digits can be divided by 8 .
(a) last two
(b) last three
(c) first two
(d) first three

Que. 2 Answer the following (Any Two)
(1) Prove that $(a-s) /(a b+s t) \Rightarrow(a-s) /(a t+s b)$.
(2) Prove that $[x]+[y] \leq[x+y] \leq[x]+[y]+1$.
(3) Prove that the indeterminate equation $a x+b y=c$ has solution iff d / c, where $(a, b)=d$.

Que. 3 (a) Let g be a positive integer greater than 1 then prove that every positive integer a can can be written uniquely in the form $a=c_{n} g^{n}+c_{n-1} g^{n-1}+\ldots . .+c_{1} g+c_{0}$, where $n \geq 0, c_{i} \in \mathbb{Z}, 0 \leq c_{i}<g, c_{n} \neq 0$.
(b) If a is a composite number and q is its least positive divisor then prove that $q<\sqrt{a}$.

OR

Que. 3 (a) If P_{n} is $n^{\text {th }}$ prime number then prove that $P_{n}<2^{2 n}, \forall n \in \mathbb{N}$.
(b) Prove that $(a, b)=(k a+b, b)$, for $k \in Z$.

Que. 4 (a) Prove that any prime factor of M_{p} is greater than p .
(b) In usual notation prove that $\sum_{d / a} \mu(d)=0$, if $a>1$.

OR

Que. 4 (a) Prove that $S(a)<a \sqrt{a}, \forall a>2$.
(b) Prove that odd prime factor of $a^{2^{n}}+1(a>1)$ is of the form $2^{n+1} t+1$, for some integer t.

Que. 5 (a) Prove that a general integer solution of $x^{2}+y^{2}+z^{2}=w^{2},(x, y, z, w)=1$ is given by $x=\left(a^{2}-b^{2}+c^{2}-d^{2}\right), y=2 a b-2 c d, z=2 a d+2 b c, w=a^{2}+b^{2}+c^{2}+d^{2}$.
(b) Solve the equation $525 x+231 y=24$ if possible.

OR

Que. 5 (a) Prove that the positive integer solution of $x^{-1}+y^{-1}=z^{-1},(x, y, z)=1$ has and must have the form $x=a(a+b), y=b(a+b), z=a b$, where $a, b>0,(a, b)=1$.
(b) Find general solution of equation $50 x+45 y+36 z=10$.

