No of printed V.P.& R.P.T.P.Science College,Vallabh Vidyanagar. B.Sc.(Semester - V) Internal Test US05CMTH05 (Number Theory) Date. 7/10/2017 ; Saturday 11.00 a.m. to 12.30 p.m. Maximum Marks:	
Que.1 Fill in the blanks.	3
(1) If a/b then $(a, b) = \dots$ $\forall a, b \in \mathbb{Z}$.	
(a) a (b) $ a $ (c) $ b $ (d) b $\left(\left(\stackrel{\circ}{\exists} \left(\text{LIBRARY} \right) \stackrel{\circ}{\exists} \right)\right)$	
(2) $S(60) = \dots$	
(a) 61 (b) 60 (c) 12 (d) 168	
(3) Prove that every number containing more than three digits can be divided by 8 iff the number by digits can be divided by 8.	formed
(a) last two (b) last three (c) first two (d) first three Que.2 Answer the following (Any Two)	4
(1) Prove that $(a - s)/(ab + st) \Rightarrow (a - s)/(at + sb)$. (2) Prove that $[x] + [y] \le [x + y] \le [x] + [y] + 1$. (3) Prove that the indeterminate equation $ax + by = c$ has solution iff d/c , where $(a, b) = d$.	
Que.3 (a) Let g be a positive integer greater than 1 then prove that every positive integer a car written uniquely in the form $a = c_n g^n + c_{n-1} g^{n-1} + \dots + c_1 g + c_0$, where $n \ge 0$, $c_i \in \mathbb{Z}$, $0 \le c_i < g$, $c_n \ne 0$.	a can be 4
(b) If a is a composite number and q is its least positive divisor then prove that $q < \sqrt{a}$.	. 2
Que.3 (a) If P_n is n^{th} prime number then prove that $P_n < 2^{2^n}$, $\forall n \in \mathbb{N}$.	4
(b) Prove that $(a, b) = (ka + b, b)$, for $k \in \mathbb{Z}$.	2
Que.4 (a) Prove that any prime factor of M_p is greater than p.	4
(b) In usual notation prove that $\sum_{d/a} \mu(d) = 0$, if $a > 1$.	2
OR	
Que.4 (a) Prove that $S(a) < a\sqrt{a}$, $\forall a > 2$.	3
(b) Prove that odd prime factor of $a^{2^n} + 1(a > 1)$ is of the form $2^{n+1}t + 1$, for some intege	rt. 3
Que.5 (a) Prove that a general integer solution of $x^2 + y^2 + z^2 = w^2$, $(x, y, z, w) = 1$ is given by $x = (a^2 - b^2 + c^2 - d^2)$, $y = 2ab - 2cd$, $z = 2ad + 2bc$, $w = a^2 + b^2 + c^2 + d^2$.	5
(b) Solve the equation $525x + 231y = 24$ if possible.	1
OR Que.5 (a) Prove that the positive integer solution of $x^{-1} + y^{-1} = z^{-1}$, $(x, y, z) = 1$ has and must form $x = a(a + b)$, $y = b(a + b)$, $z = ab$, where a , $b > 0$, $(a, b) = 1$.	have the 3
(b) Find general solution of equation $50x + 45y + 36z = 10$.	3
