V.P. \& R.P.T.P. Science College,V.V.Nagar Internal Test: 2017-18

Subject: Mathematics
Date: 05/10/2017

Max. Marks : 25
Metric Spaces
Timing: $11.00 \mathrm{am}-12.30 \mathrm{pm}$

Q: 1. Answer the following by choosing correct answers from given choices.
[1] The set of all cluster points of $(1,2)$ is
[A] $[1,2]$
[B] $[1,2)$
[C] $(1,2]$
[D]. $(1,2)$
[2] In the metric space $M=[0,1]$ with usual metric , $B\left[\frac{1}{4}, 1\right]=$
[A] $[0,1]$
[B] $\left[\frac{1}{4}, 1\right]$
[C] $\left[0, \frac{1}{4}\right]$
[D] $(0,1)$
[3] subset $(0, \infty)$ of R^{1} is
[A] bounded
[B] totally bounded
[C] neither bounded nor totally bounded
[D] none
Q: 2. Answer ANY TWO of the following.
[1] Show that $\rho: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, defined by $\rho(x, y)=|x-y|$, is a metric on \mathbb{R}
[2] Prove that in any metric space (M, ρ), both M and ϕ are open sets.
[3] Prove that every contraction mapping is continuous.
Q: 3. Define limit of a function. Also prove that

$$
\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)
$$

Q:3 [A] Prove that if $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a convergent sequence of points in a metric space (M, ρ) then $\left\{s_{n}\right\}_{n=1}^{\infty}$ is Cauchy. Is the converse true? Justify.
[B] For $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2} define $\tau: \mathbb{R}^{2} \times \mathbb{R}^{2} \longrightarrow \mathbb{R}$ by

$$
\tau(P, Q)=\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)
$$

Show that τ is a metric on \mathbb{R}^{2}
$\mathrm{Q}: 4$ [A] If F_{1} and F_{2} are closed subsets of the metric space M, then prove that $F_{1} \cup F_{2}$ is also closed.
[B] If A_{1} and A_{2} are connected subsets of a metric space M and if $A_{1} \cap A_{2} \neq \phi$, then prove that $A_{1} \cup A_{2}$ is also connected.

Q: 4 [A] Prove that $(0, \infty)$ and $(0,1)$ are homeomorphic.
[B] Prove that Every open subset G of \mathbb{R} can be written $G=\bigcup I_{n}$, where $I_{1}, I_{2}, I_{3}, \ldots$ are a finite number or a countable number of open intervals which are mutually disjoint.

Q: 5 [A] Prove that every finite subset of a metric space M is totally bounded.
[B] If (M, ρ) is a complete metric space and A is a closed subset of M, then prove that (A, ρ) is also complete.

OR

Q: 5. State and prove Picard's fixed point theorem.

