V.P. & R.P.T.P. Science College, V.V.Nagar

Internal Test: 2017-18

Subject : Mathematics US05CMTH03 Metric Spaces

Date: 05/10/2017

Timing: 11.00 am - 12.30 pm

Max. Marks: 25

Q: 1. Answer the following by choosing correct answers from given choices.
[1] The set of all cluster points of (1, 2) is

[A] [1, 2]
[B] [1, 2)
[C] (1, 2]
[D] (1, 2)

[2] In the metric space M = [0, 1] with usual metric , B[¹/₄, 1] =

[A] [0, 1]
[B] [¹/₄, 1]
[C] [0, ¹/₄]
[D] (0, 1)

- [3] subset $(0,\infty)$ of \mathbb{R}^1 is
 - [A] bounded
 - [B] totally bounded
 - [C] neither bounded nor totally bounded
 - [D] none

Q: 2. Answer ANY TWO of the following.

- [1] Show that $\rho: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, defined by $\rho(x, y) = |x y|$, is a metric on \mathbb{R}
- [2] Prove that in any metric space (M, ρ) , both M and ϕ are open sets.
- [3] Prove that every contraction mapping is continuous.
- **Q: 3.** Define limit of a function. Also prove that $\lim_{x \to a} [f(x).g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$

OR

- **Q: 3** [A] Prove that if $\{s_n\}_{n=1}^{\infty}$ is a convergent sequence of points in a metric space (M, ρ) then $\{s_n\}_{n=1}^{\infty}$ is Cauchy. Is the converse true? Justify.
 - **[B]** For $P(x_1, y_1)$ and $Q(x_2, y_2)$ in \mathbb{R}^2 define $\tau : \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ by

$$\tau(P,Q) = max(|x_1 - x_2|, |y_1 - y_2|)$$

Show that τ is a metric on \mathbb{R}^2

- **Q:** 4 [A] If F_1 and F_2 are closed subsets of the metric space M, then prove that $F_1 \cup F_2$ is also closed.
 - [B] If A_1 and A_2 are connected subsets of a metric space M and if $A_1 \cap A_2 \neq \phi$, then prove that $A_1 \cup A_2$ is also connected.

1

3

6

3

3

3

3

Q: 4 [A] Prove that $(0, \infty)$ and (0, 1) are homeomorphic. 3 [B] Prove that Every open subset G of \mathbb{R} can be written $G = \bigcup I_n$, where I_1, I_2, I_3, \ldots are a finite number or a countable number of open intervals which are mutually disjoint. 3 **Q:** 5 [A] Prove that every finite subset of a metric space M is totally bounded. 3 **[B]** If (M, ρ) is a complete metric space and A is a closed subset of M, then prove that (A, ρ) is also complete. 3 OR Scie Q: 5. State and prove Picard's fixed point theorem. 6 TERAR