V.P. \& R.P.T.P. Science College,V.V.Nagar

Internal Test: 2017-18
Subject: Mathematics
US05CMTH02
Max. Marks : 25
Real Analysis-II
Date: 04/10/2017
Timing: $11.00 \mathrm{am}-12.30 \mathrm{pm}$

Q: 1. Answer the following by choosing correct answers from given choices.
[1] A sequence $\left\{S_{n}\right\}$; where

$$
S_{n}= \begin{cases}2 & ; \text { if } n=1 \text { or even } \\ p & ; \text { where } p \text { is the smallest prime factor of } n .\end{cases}
$$

is
$[A]$ convergent $[B]$ divergent $[C]$ oscillates finitely $[D]$ oscillates infinitely

[2] A positive term series $\sum_{n=1}^{\infty} u_{n}$ is convergent if
[A] $\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=0$
[B] $\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}>1$
[C] $\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}<1$
[D] none
[3] $\lim _{(x, y) \rightarrow(0,0)} \frac{x \sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=$
[A] 0
[B] 1
[C] 2
[D] 3

Q: 2. Answer ANY any TWO of the following.
[1] Prove that every convergent sequence is bounded.
[2] Show that the necessary condition for convergence of an infinite series $\sum_{n=1}^{\infty} u_{n}$ is that $\lim _{n \rightarrow \infty} u_{n}=0$
[3] Show that the following function is discontinuous at $(2,3)$

$$
f(x, y)=\left\{\begin{array}{l}
2 x+3 y^{3} ; \text { when }(x, y) \neq(2,3) \\
0 \quad ; \quad \text { when }(x, y)=(2,3)
\end{array}\right.
$$

Q: 3 [A] State and prove the Bolzano-Weierstarss theorem for sequence
[B] Show that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
OR
Q: 3 [A] If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences such that $\lim _{n \longrightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then prove that

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b
$$

[B] Prove that a sequence $\left\{S_{n}\right\}$ defined by the recursion formula $S_{n+1}=\sqrt{7+S_{n}}$, where $S_{1}=\sqrt{7}$, converges to the positive root of $x^{2}-x-7=0$

Q: 4 [A] State and prove Cauchy's general principle for convergence of a series.
[B] Show that the positive term series $1+r+r^{2}+r^{3}+\ldots$ is convergent for $r<1$ and diverges to $+\infty$ for $r \geqslant 1$.

OR

Q: 4. State and prove the comparision test of second type.
Q: 5 [A] Show that the following function is discontinuous at $(0,0)$

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{3}+y^{3}} & , \text { if }(x, y) \neq(0,0) \\ 0 & , \text { if }(x, y)=(0,0)\end{cases}
$$

[B] Show that $\lim _{(x, y) \rightarrow(0,0)} x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=0$

Q: 5. Show that $\frac{\partial^{2} \theta}{\partial x \partial y}=-\frac{\cos 2 \theta}{r^{2}}$
OR

