V.P. & R.P.T.P.SCIENCE COLLEGE, VALLABH VIDYANAGAR

INTERNAL EXAMINATION B.Sc. (Semester- 6) Monday, 6th March2017 11:00 a.m. to 12:30 p.m. Subject: PHYSICS Course: US06CPHY01 Title: Quantum Mechanics

Total Marks:25

Q-1	Multi	ple Choice Questions (Attempt All)	(03)
	(1) The concept of matter wave was suggested by		
		(a) de Broglie (b) Laplace	
		(c) Heisenberg (d) Schrodinger	
	(2) For bound state of a particle in a square well the energy is		
		(a) $E = 0$ (b) $E = \propto$	
		(c) $E < 0$ (d) $E > 0$	
	(3)	Potential for simple harmonic oscillator is $V = $	
		(a) $\frac{p^2}{2m}$ (b) $\frac{1}{2}kx^2$	
		2111 -	
		(c) mgh (d) kx	
Q-2	Short	Questions (Attempt any Two)	(04)
	1.4.1		
	(1)	State the Heisenberg's uncertainty principle	
	(2)	Define odd and even parity of wave function	
	(3)	Write the Hamiltonian for anisotropic oscillator	
Q-3		Discuss the motion of a wave packet and derive the expression of group velocity of wave packet	(06)
		OR	
Q-3		Derive the one dimensional Schrodinger equation for a free particle	(06)
Q-4		Find the solution for a particle in a square well for E < 0 OR	(06)
Q-4		Using the admissible solutions derive the expression of energy eigen values for a particle in a square well	(06)
Q-5		Set up the Schrodinger equation for simple harmonic oscillator and obtain its eigen value	(06)
	OR		
Q-5		Deduce the motion of a particle in central potential and derive the radial equation	(06)