

V.P.\& R.P.T.P.Science College.Vallabh Vidyanagar. Internal Test
B.Sc. Semester VI
US06CMTH06 (Mechanics-2)
Saturday , $11^{\text {th }}$ March 2017
11.00 a.m. to 12.30 p.m.

Que. 1 Fill in the blanks.
(1) Unit of angular momentum is \qquad

(2) Maximum height of projectile is \qquad
(a) $\frac{2 v_{0} \sin \alpha}{g}$
(b) $\frac{v_{0} \sin \alpha}{g}$
(c) $\frac{v_{0}^{2} \sin 2 \alpha}{g}$
(d) $\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}$
(d) lb.ft./ sec^{2}.
(a) lb.ft ${ }^{2} . / \mathrm{sec}$.
(b) lb.ft./sec.
(c) $g m \cdot f t^{2} . / \mathrm{sec}$.
) The squares of the periodic times of the planets are proportional to the \qquad of the semi major axis of their orbits
(a) cube roots
(b) cubes
(c) squares
(d) square roots

Que. 2 Answer the following (Any three)
(1) Obtain equation of motion of a particle in cartesian form and polar form .
(2) Obtain equation of path of projectile in the form $y=x \tan \alpha\left(1-\frac{x}{R}\right)$, where R is horizontal range .
(3) Find the law of force towards the pole for the curve described by the equation $r=a e^{\theta \cot \alpha}$.

Que. 3 (a) State and prove principle of conservation of energy.
(b) Prove that the rate of change of kinetic energy is equal to the rate of change of workdone by the force.

OR

Que. 3 (a) State and prove principle of angular momentum of a system relative to the mass center .
(b) Verify the principle of conservation of energy, if a particle slides down, on a smooth inclined plane starting from the rest.
Que. 4 (a) A particle of mass m is projected in a vertical plane through the point of projection with velocity v_{0} in the direction making an angle α with the horizontal axis .Show that the path of projectile is parabola.
(b) A particle just clear a wall of height 'b', at a distance 'a' and and strikes the ground at a distance 'c', from the point of projection. Prove that the angle of projection is given by, $\alpha=\tan ^{-1}\left(\frac{b c}{a c-a^{2}}\right)$.

OR

Que. 4 (a) Obtain the equation of motion of projectile with resistance in the form $y=y_{0}+u_{y} t-\frac{1}{2} g t^{2}-\frac{1}{2} \phi u_{y} t^{2}\left(1-\frac{g t}{3 u_{y}}\right)$.
(b) A shell is fired vertically upward with the velocity v_{0}. The resistance of air is $m g c v^{2}$. Show that the maximum height attain by the shell is $h=\frac{1}{2 g c} \log \left(1+c v_{0}^{2}\right)$.
Que. 5 (a) If a particle moves in a central orbit under inverse square law then prove that its orbit is conic .
(b) Find moment of inertia of a rectangular plate of mass m and edges of lengths $2 a$ and $2 b$ about a line passes through the center of the plate and parallel to the edge $2 b$.

OR
Que. 5 (a) Obtain differential equation of orbit under central force.
(b) State and prove the theorem of $\kappa O O N G$.

