## V.P. & R.P.T.P. Science College, V.V.Nagar

Topology

Internal Test: 2016-17

US06CMTH03

Max. Marks : 25

Date: 08/03/2017

Subject : Mathematics

Timing: 11:00 am - 12:30 pm

Q: 1. Answer the following by choosing correct answers from given choices.

- [1] The discrete topology on a non-empty set X is \_\_\_\_\_ its indiscrete topology [A] coarser than [B] finer than [C] not comparable with [D] none
- $\begin{array}{c} [2] \text{ If } A \text{ is a closed set in a topological space then} \\ [A] A \subset A' \qquad [B] A^- \neq A \qquad [C] A = A' \end{array}$
- $\begin{bmatrix} 3 \end{bmatrix} \text{ Every non-empty and bounded below subset of } R \text{ possesses} \\ \begin{bmatrix} A \end{bmatrix} \text{ the g.l.b. in } R \\ \begin{bmatrix} C \end{bmatrix} \text{ g.l.b. and l.u.b. in } R \\ \begin{bmatrix} D \end{bmatrix} \text{ none}$

Q: 2. Answer any TWO of the following.

- [1] For a set  $X = \{a, b, c, d\}$  give any two closed subsets of X relative to the topology  $\{\emptyset, X, \{a\}, \{a, b\}\}$
- [2] Find the sets of cluster points of (1, 2) in usual topology and discrete topology of  $\mathbb{R}$
- [3] Let  $f : [0,1] \to R$  be continuous on [0,1] and be onto R also. Is f([0,1]) connected?

**Q: 3** [A] Let  $\mathcal{G}$  be a family of subsets of  $\mathbb{R}$  as described below (i)  $\emptyset \in \mathcal{G}$ (ii) If  $G \in \mathbb{R}$  and  $G \neq \emptyset$  then  $G \in \mathcal{G}$  if for each  $p \in G$  there is a set  $H = \{x \in \mathbb{R} | a \leq x < b\}$  for some a < b such that  $p \in H \subset G$ . Prove that  $\mathcal{G}$  is an unusual nontrivial topology of  $\mathbb{R}$ 

[B] Define Comparable Topologies and if  $X = \{a, b, c\}$  then find three topologies  $\mathcal{T}_1, \mathcal{T}_2$  and  $\mathcal{T}_3$  for X such that  $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \gneqq \mathcal{T}_3$ 

## OR

- **Q:** 3 [A] Let  $(X, \mathcal{T})$  be a topological space and let A be a subset of X. Prove that A is  $\mathcal{T}$ -open set iff A contains a  $\mathcal{T}$ -neighbourhood of each of its points
  - [B] Let  $(X, \mathcal{T})$  be a topological space. If  $\{F_{\alpha} \mid \alpha \in \Lambda\}$  is any collection of  $\mathcal{T}$ -closed subsets of X then prove that  $\bigcap \{F_{\alpha} \mid \alpha \in \Lambda\}$  is a  $\mathcal{T}$ -closed set 3
- **Q:** 4 [A] Let  $(X, \mathcal{T})$  be a topological space and let A be a subset of X and A' be the set of all cluster points of A. Prove that A is  $\mathcal{T}$ -closed iff  $A' \subset A$

Page 1 of 2

P. Scien  $[\mathsf{D}] \ A' \subset A$ LIBRA VNa

4

3

3

3

3

3

[B] Let  $(X, \mathcal{T})$  be a topological space and let A be a subset of X. Then prove that  $A^- = A \cup A'$ .

## OR

- Q: 4. If (X, T) and (Y, Ψ) are topological spaces and f is a mapping from X into Y then prove that the following statements are equivalent

  (a) The mapping f is continuous
  (b) The inverse image of f of every Ψ-closed set is T-closed set
  (c) If x ∈ X then inverse image of every Ψ-neighbourhood of f(x) is a T-neighbourhood of x
  (d) If x ∈ X and N is a Ψ-neighbourhood of (x), then there is a T-neighbourhood M of x such that f(M) ⊂ N
  (e) If A ⊂ X, then f(A<sup>-</sup>) ⊂ f(A)<sup>-</sup>

  Q: 5 [A] Prove that if a space (X, T) has a nonempty proper subset A that is both T-open and T-closed, then (X, T) is disconnected.
  - [B] If  $(Y, \mathcal{T}_Y)$  is a compact subspace of a Hausdorff space  $(X, \mathcal{T})$ , then prove that Y is  $\mathcal{T}$  closed.

## OR

Q: 5. Prove that the space (R, U) is connected.



| Page | 2 | of | 2 |
|------|---|----|---|
|      |   |    |   |

6

3