V.P. \& R.P.T.P. Science College,V.V.Nagar

Date: 06/03/2017
Timing: 11:00 am-12:30 pm

Q: 1. Answer the following by choosing correct answers from given choices.
[1] In usual notations, the Schlömilch-Röche form of remainder in Taylor's theorem is

$$
\begin{array}{ll}
{[\mathrm{A}] \frac{h^{n-1}(1-\theta)^{n-p}}{p(n-1)!} f^{(n)}(a+\theta h)} & \text { [B] } \frac{h^{n}(1-\theta)^{n-p}}{p(n-1)!} f^{(n)}(a+\theta h) \\
{[\mathrm{C}] \frac{h^{n}(1-\theta)^{n-p}}{p(n-1)!} f^{(n-1)}(a+\theta h)} & {[\mathrm{D}] \frac{h^{n}(1-\theta)^{n}}{p(n-1)!} f^{(n)}(a+\theta h)}
\end{array}
$$

[2] If a number c is a stationary point of derivable function f then
[A] $f(c)=0$
[B] $f^{\prime}(c)=0$
$[C] f^{\prime \prime}(c)=0$
[D] none
[3] The norm of the partition $\{0,1,4,5,6,8,10\}$ of $[0,10]$ is
[A] 0
[B] 1
[C] 2
[D] 3

Q:2. Answer any TWO of the following.
[1] Explain the algebraic meaning of Rolle's theorem
[2] Show that $f(x)=x^{3}$ has no extreme value at 0
[3] Can two partitions of $[a, b]$ be disjoint sets? Justify.
Q: 3 [A] State and prove Lagrange's Mean Value theorem

[B] Examine the validity of the hypothesis and the conclusion of Lagrange's Mean Value theorem for the function $f(x)=x(x-1)(x-2)$ on $\left[0, \frac{1}{2}\right]$

Q: 3 [A] State and prove Taylor's theorem.
[B] A twice differentiable function f is such that $f(a)=f(b)=0$ and $f(c)>0$ for $a<c<b$. Prove that there is at least one value ξ between a and b for which $f^{\prime \prime}(\xi)<0$.

Q: 4 [A] Prove that if $f(c)$ is an extreme value of a function then $f^{\prime}(c)$, if exists, is zero.
[B] Show that $x^{5}-5 x^{4}+5 x^{3}-1$ has maxima at $x=1$, minima at $x=3$ and neither at 0
OR

Q: 4 [A] If c is an interior point of the domain $[a, b]$ of a function f and is such that
(i) $f^{\prime}(c)=f^{\prime \prime}(c)=f^{\prime i j}(c)=\ldots=f^{(n-1)}(c)=0$ and
(ii) $f^{(n)}$ exists and is zero
then show that for n odd, $f(c)$ is not an extreme value, while for n even $f(c)$ is maximum or minimum according as $f^{(n)}$ is negative or positive.
[B] Examine the function $\sin x+\cos x$ for extreme values
Q: 5. State and prove Darboux's Theorem.

OR

Q: 5. Prove that a necessary and sufficient condition for the integrability of a bomnded function f is that for every $c>0$ there exists a partition P of $[a, b]$ such that

$$
U(P, f)-L(P, f)<\epsilon
$$

