V.P. & R.P.T.P. Science College, V.V.Nagar

Internal Test: 2016-17

Subject : Mathematics US06CMTH01 Max. Marks: 25 Real Analysis - III

Q: 1. Answer the following by choosing correct answers from given choices.

[1] In usual notations, the Schlömilch-Röche form of remainder in Taylor's theorem is Ln - 1(1)n n - nn = n

[A]
$$\frac{h^{n}(1-\theta)^{n-p}}{p(n-1)!}f^{(n)}(a+\theta h)$$
 [B] $\frac{h^{n}(1-\theta)^{n-p}}{p(n-1)!}f^{(n)}(a+\theta h)$
[C] $\frac{h^{n}(1-\theta)^{n-p}}{p(n-1)!}f^{(n-1)}(a+\theta h)$ [D] $\frac{h^{n}(1-\theta)^{n}}{p(n-1)!}f^{(n)}(a+\theta h)$

- $\begin{bmatrix} 2 \end{bmatrix}$ If a number c is a stationary point of derivable function f then [B] f'(c) = 0[A] f(c) = 0[C] f''(c) = 0[D] none
- [3] The norm of the partition $\{0, 1, 4, 5, 6, 8, 10\}$ of [0, 10] is $[\mathbf{A}] \mathbf{0}$ [B] 1 [C] 2
- Q: 2. Answer any TWO of the following.

Date: 06/03/2017

- [1] Explain the algebraic meaning of Rolle's theorem
- [2] Show that $f(x) = x^3$ has no extreme value at 0
- $\begin{bmatrix} 3 \end{bmatrix}$ Can two partitions of [a, b] be disjoint sets? Justify.
- Q: 3 [A] State and prove Lagrange's Mean Value theorem
 - **B** Examine the validity of the hypothesis and the conclusion of Lagrange's Mean Value theorem for the function f(x) = x(x-1)(x-2) on $[0, \frac{1}{2}]$

OR

- Q: 3 [A] State and prove Taylor's theorem.
 - **B** A twice differentiable function f is such that f(a) = f(b) = 0 and f(c) > 0for a < c < b. Prove that there is at least one value ξ between a and b for which $f''(\xi) < 0$.
- Q: 4 [A] Prove that if f(c) is an extreme value of a function then f'(c), if exists, is zero.
 - [B] Show that $x^5 5x^4 + 5x^3 1$ has maxima at x = 1, minima at x = 3 and neither at 0

P. Scie d' LIBRAF à V. Nac

Timing: 11:00 am - 12:30 pm

[D] 3

3

3

4

3

3

3

3

3

Q: 4 [A] If c is an interior point of the domain [a, b] of a function f and is such that (i) $f'(c) = f''(c) = f'''(c) = \dots = f^{(n-1)}(c) = 0$ and (ii) $f^{(n)}$ exists and is zero then show that for n odd, f(c) is not an extreme value, while for n even f(c)is maximum or minimum according as $f^{(n)}$ is negative or positive.

[B] Examine the function $\sin x + \cos x$ for extreme values

Q: 5. State and prove Darboux's Theorem.

OR

Q: 5. Prove that a necessary and sufficient condition for the integrability of a bounded function f is that for every $\epsilon > 0$ there exists a partition P of [a, b] such that

$$U(P,f) - L(P,f) < \epsilon$$

6

3

3

6