V.P & R.P.T.P. SCIENCE COLLEGE B.Sc. (SEM-5) Examination 2016

Subject: Physics (Thermodynamics and statistical Physics)

Course: US05CPHY04

Date: 04/10/2016 Day: Tuesday

Time: 11:00 to 12:30 Total Marks: 25

Q.1 M.C.Q.				3
(1) An adiabatic process oc	curs at constant			
(a) Temperature	(b) Pressure	(c) Heat	(d) Volume	
(2) The mean kinetic energy	y of a particle pe	er degree of fi	reedom is	
(a) kT	(b) $\frac{1}{2}$ kT	(c) $\frac{3}{2}$ kT	(d) $\frac{5}{2}$ kT	
(3) If the system is in the	condition	the phase space	ce is known as the Γ space.	
(a) Gaseous	(b) liquid	(c) solid	(d) none of above	
Q.2 Short question (any t	wo)			4
(1) Define Specific latent h	eat and phase tra	ansition.		
(2) Define Paramagnetic an	d Ferromagneti	c material.		
(3) State Nernst's heat theo	rem.			
(4) Define Chemical potent	ial and Degener	acy.		
Q.3 Deduce Clausius-Clape	eyron's equation	n for the chang	e of equilibrium pressure	
of two phases with temp	erature.			6
		OR		
Show that in a throttling	process the initi	al and final er	thalpies of the system are e	equal.
				6
Q.4 Show that the probabil	ity density is co	nstant along th	ne phase trajectories of the p	phase
points.				6
		OR		
What is Gibbs paradox in microcanonical ensemble? How it is removed.				6
Q.5 Derive an expression for Maxwell distribution of velocities.				6
		OR		
Derive an expression for canonical distribution.				6