V.P.& R.P.T.P.Science College.Vallabh Vidyanagar. B.Sc. (Semester - V) Internal Test US05CMTH04 (Abstract Algebra - 1)

Date. 4/10/2016 ; Tuesday 11.00 a.m. to 12.30 p.m. Maximum Marks: 25

Que.1 Fill in the blanks.

(1) Multiplicative inverse of 5 in Z_7^* is

(a) 3 (b) 6 (c) 2 (d) 1

- (2) is generator of group Z_5^* .
 - (a) $\bar{0}$ (b) $\bar{1}$ (c) $\bar{4}$ (d) $\bar{2}$
- (3) Every cyclic group of order is simple group. (a) 4 (b) prime (c) 6 (d) 1
- Que.2 Answer the following (Any Two)
 - (1) Prove that every group has unique unit element.
 - (2) Find all generators of group $\{\dots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \dots\}$.
 - (3) Prove that homomorphic image of abelian group is also abelian.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
OR Que.3 (a) Let H and K be finite subgroups of group G such that HK is a subgroup of G.Then prove that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$. 4 (b) Prove that fourth root of unity forms a group . 2 Que.4 (a) Prove that any subgroup of a cyclic group is also cyclic group . 4 (b) Prove that an infinite cyclic group has exactly two generators . 2 Que.4 (a) Let G be a finite cyclic group of order n . Then prove that G has unique subgroup of order d for every divisor d of n . 4 (b) If G is a finite group and H a subgroup of G , then prove that O(G) = O(H)(G:H). 2 Que.5 (a) State and prove First isomorphism theorem . 4 (b) Prove that a subgroup H is normal in group G iff $xH = Hx \forall x \in G$. 2 Que.5 (a) Let $G' = \{1, \rho, \rho^2,, \rho^{n-1}\}$ be the multiplicative group of n^{th} root of unity,	Que.3	(a)		4
Que.3 (a) Let H and K be finite subgroups of group G such that HK is a subgroup of G.Then prove that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$. (b) Prove that fourth root of unity form: a group . Que.4 (a) Prove that any subgroup of a cyclic group is also cyclic group . (b) Prove that an infinite cyclic group has exactly two generators . 2 Que.4 (a) Let G be a finite cyclic group of order n . Then prove that G has unique subgroup of order d for every divisor d of n . (b) If G is a finite group and H a subgroup of G , then prove that $O(G) = O(H)(G : H)$. Que.5 (a) State and prove First isomorphism theorem . (b) Prove that a subgroup H is normal in group G iff $xH = Hx \forall x \in G$. Que.5 (a) Let $G' = \{1, \rho, \rho^2,, \rho^{n-1}\}$ be the multiplicative group of n^{th} root of unity,		(b)	Let H and K be subgroups of group G , if HK is subgroup of G then prove that $HK = KH$.	2
$O(HK) = \frac{O(H)O(K)}{O(H \cap K)}.$ (b) Prove that fourth root of unity form: a group . (c) Prove that any subgroup of a cyclic group is also cyclic group . (c) Prove that an infinite cyclic group has exactly two generators . (c) OR Que.4 (a) Let G be a finite cyclic group of order n. Then prove that G has unique subgroup of order d for every divisor d of n. (c) If G is a finite group and H a subgroup of G , then prove that $O(G) = O(H)(G : H).$ Que.5 (a) State and prove First isomorphism theorem . (c) OR Que.5 (a) Let $G' = \{1, \rho, \rho^2,, \rho^{n-1}\}$ be the multiplicative group of n^{th} root of unity,			OR	
Que.4 (a) Prove that any subgroup of a cyclic group is also cyclic group .4(b) Prove that an infinite cyclic group has exactly two generators .2ORQue.4 (a) Let G be a finite cyclic group of order n . Then prove that G has unique subgroup of order d for every divisor d of n .(b) If G is a finite group and H a subgroup of G , then prove that $O(G) = O(H)(G : H)$.2Que.5 (a) State and prove First isomorphism theorem .4(b) Prove that a subgroup H is normal in group G iff $xH = Hx \forall x \in G$.2OR Que.5 (a) Let $G' = \{1, \rho, \rho^2,, \rho^{n-1}\}$ be the multiplicative group of n^{th} root of unity,	Que.3	(a)		4
 (b) Prove that an infinite cyclic group has exactly two generators . OR Que.4 (a) Let G be a finite cyclic group of order n. Then prove that G has unique subgroup of order d for every divisor d of n. (b) If G is a finite group and H a subgroup of G , then prove that O(G) = O(H)(G : H) . Que.5 (a) State and prove First isomorphism theorem . (b) Prove that a subgroup H is normal in group G iff xH = Hx ∀ x ∈ G . OR Que.5 (a) Let G' = {1, ρ, ρ²,, ρⁿ⁻¹} be the multiplicative group of nth root of unity, 		(b)	Prove that fourth root of unity forma a group.	2
OR Que.4 (a) Let G be a finite cyclic group of order n . Then prove that G has unique subgroup of order d for every divisor d of n . (b) If G is a finite group and H a subgroup of G, then prove that O(G) = O(H)(G : H). Que.5 (a) State and prove First isomorphism theorem . (b) Prove that a subgroup H is normal in group G iff $xH = Hx \forall x \in G$. Que.5 (a) Let $G' = \{1, \rho, \rho^2,, \rho^{n-1}\}$ be the multiplicative group of n^{th} root of unity,	Que.4	(a)	Prove that any subgroup of a cyclic group is also cyclic group .	4
 Que.4 (a) Let G be a finite cyclic group of order n. Then prove that G has unique subgroup of order d for every divisor d of n. (b) If G is a finite group and H a subgroup of G, then prove that O(G) = O(H)(G : H). Que.5 (a) State and prove First isomorphism theorem . (b) Prove that a subgroup H is normal in group G iff xH = Hx ∀ x ∈ G. Que.5 (a) Let G' = {1, ρ, ρ²,, ρⁿ⁻¹} be the multiplicative group of nth root of unity, 		(b)	Prove that an infinite cyclic group has exactly two generators .	2
 every divisor d of n. (b) If G is a finite group and H a subgroup of G, then prove that O(G) = O(H)(G : H). Que.5 (a) State and prove First isomorphism theorem . (b) Prove that a subgroup H is normal in group G iff xH = Hx ∀ x ∈ G. Que.5 (a) Let G' = {1, ρ, ρ²,, ρⁿ⁻¹} be the multiplicative group of nth root of unity, 			OR	
 O(G) = O(H)(G : H). Que.5 (a) State and prove First isomorphism theorem . (b) Prove that a subgroup H is normal in group G iff xH = Hx ∀ x ∈ G . OR Que.5 (a) Let G' = {1, ρ, ρ²,, ρⁿ⁻¹} be the multiplicative group of nth root of unity, 	Que.4	(a)		4
(b) Prove that a subgroup H is normal in group G iff xH = Hx ∀ x ∈ G. 2 OR Que.5 (a) Let G' = {1, ρ, ρ ² ,, ρ ⁿ⁻¹ } be the multiplicative group of n th root of unity,		(b)		2
OR Que.5 (a) Let $G' = \{1, \rho, \rho^2,, \rho^{n-1}\}$ be the multiplicative group of n^{th} root of unity,	Que.5	(a)	State and prove First isomorphism theorem .	4
Que.5 (a) Let $G' = \{1, \rho, \rho^2,, \rho^{n-1}\}$ be the multiplicative group of n^{th} root of unity,		(b)	Prove that a subgroup H is normal in group G iff $xH = Hx \ \forall x \in G$.	2
	Que.5	(a)		4

(b) Prove that any finite cyclic group of order n is isomorphic to Z_n .

3

4

2