

V.P. & R.P.T.P. Science College, V.V.Nagar Internal Test: 2016-17 Subject : Mathematics US05CMTH03 Max. Marks: 25 Metric Spaces Date: 03/10/2016 Timing: 11.00 am - 12.30 pm Q: 1. Answer the following by choosing correct answers from given choices. 3 [1] The set of cluster points of the null set, ϕ in \mathbb{R}^1 is $[D] \phi$ [A] R[B] Q[C] N**[2]** In a metric space (M, ρ) , its subsets M and ϕ are [A] both open but not closed [B] closed but not open [C]open as well as closed [D]neither open nor closed $\begin{bmatrix} 3 \end{bmatrix}$ If a subset A of a metric space M is totally bounded then it is [A] complete [B] unbounded [C] · bounded D connected Q: 2. Answer any TWO of the following. 4 [1] Let X be a nonempty set and then find and $d: X \times X \longrightarrow R$ be defined by $d(x,y) = \begin{cases} 0 & \text{:if } x = y \\ 1 & \text{;if } x \neq u \end{cases}$ then show that *d* is a metric on *X*. **[2]** For the discrete metric \mathbb{R}_d , find (1) B[a; 2] (2) B[a; 1/2]**3** Prove or disprove that the empty set ϕ and singletone set are assumed to be connected. Q: 3. Define limit of a function. Also prove that $\lim_{x \to a} [f(x).g(x)] = \lim_{x \to a} f(x).\lim_{x \to a} g(x)$ 6 OR **Q:** 3 [A] Let $d: [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}] \longrightarrow \mathbb{R}$ be defined by $d(x, y) = \sin |x - y|$. Show that d is a metric on $[0, \frac{\pi}{2}]$. 3 **B** If ρ and σ are metrics for M and if there exists k > 1 such that $\frac{1}{k}\sigma(x,y) \leqslant \rho(x,y) \leqslant k\sigma(x,y), \quad \forall x,y \in M$ 3 then prove that ρ and σ are equivalent. **Q:** 4 [A] If E is any subset of the metric space M, Then show that \overline{E} is closed. 3

[B] If G_1 and G_2 are open subsets of the metric space M, then $G_1 \cap G_2$ is also open in M. 3

OR

Q: 4 [A] Prove that [0, 1] and [a, b] are homeomorphic.

- [B] Let f be a continuous function from a metric space M_1 into a metric space M_2 . If M_1 is connected, then prove that the range of f is also connected.
- **Q:** 5 [A] If the subset A of the metric space (M, ρ) is totally bounded, then prove that A is bounded.
 - [B] If (M, ρ) is a complete metric space and A is a closed subset of M, then prove that (A, ρ) is also complete.

OR

Q: 5. State and prove generalized nested interval theorem.

3

3

3

6