V.P. \& R.P.T.P. Science College,V.V.Nagar

Internal Test: 2016-17
Subject: Mathematics
US05CMTH01
Max. Marks : 25
Real Analysis-I
Date: 29/09/2016
Timing: $11.00 \mathrm{am}-12.30 \mathrm{pm}$

Q: 1. Answer the following by choosing correct answers from given choices.
[1] The field which does not have the least upper bound property is
[A] N
[B] Z
[C] Q

[2] If S_{1}, S_{2}, S_{3} and S_{4} are open sets then $S_{1} \cap S_{2} \cap S_{3} \cap S_{4}$ is
[A] closed
[B] open
[C] Open as well as closed [D] none
[3] If a function $f(x)$ has a discontinuity of first type at $x=2$ then $\lim _{x \rightarrow 2-} f(x)$ and $\lim _{x \rightarrow 2+} f(x)$ both
[A] do not exist
[B] exist and they are equal
[C] exist but they are not equal
[D] cannot exist togather

Q: 2. Answer any TWO of the following.
[1] Find the Greatest and the smallest members of $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}$ if they exist.
[2] Determine whether the interior of the set $[2,8] \cup(9,10) \cap N$ is open or not.
[3] If $[x]$ denotes the largest integer less than or equal to x, then discuss the continuity at $x=3$ for the function $f(x)=x-[x], \forall x \geqslant 0$,

Q: 3. State the Least Upper Bound property of R and prove that the field of rational numbers is not order complete.

OR
Q: 3 [A] In usual notations prove that $E(x)=e^{x}, x \in R$.
[B] State and prove the Archimedean property of R.
Q: 4. Define Derived Set. Also prove that derived set S^{\prime} of a bounded infinite set S has the smallest and the greatest members.

OR
Q: 4 [A] Show that the interior of a set contains every open subset of a set.
[B] If S and T are sets of real numbers then prove the following
(i) $S \subset T \Rightarrow S^{\prime} \subset T^{\prime}\left(\right.$ ii) $(S \cup T)^{\prime}=S^{\prime} \cup T^{\prime}$

Q: 5 [A] Examine the following function for continuity at $x=0$

$$
f(x)= \begin{cases}\frac{x e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}} & \text { when } \quad x \neq 0 \\ 0, & \text { when } x=0\end{cases}
$$

[B] Prove that limit of a function is unique, if it exists.

OR

Q: 5. Show that a function $f:[a, b] \rightarrow \Re$ is continuous at point c of $[\mathrm{a}, \mathrm{b}]$ iff

$$
\lim _{n \rightarrow \infty} c_{n}=c \Longrightarrow \lim _{n \rightarrow \infty} f\left(c_{n}\right)=f(c)
$$

