V.P.\& R.P.T.P.Science College.Vallabh Vidyanagar.
Internal Test
B.Sc. Semester VI
US06CMTH06 (Mechanics - 2)
Saturday , $15^{\text {th }}$ March 2014
3.30 p.m. to 5.00 p.m.

Maximum Marks: 30

Que. 1 Answer the following (Any three)
(1) State and prove principle of linear momentum of a system .
(2) State and prove d'Alembert's principle .
(3) Find the maximum height H attained by the projectile

(4) A particle is projected upward in the direction of making an angle 60° with the horizontal. Show that its velocity at maximum height is half of its initial velocity (Neglect resistance of air).
(5) In a motion under a central force, prove that the areal velocity is constant .
(6) By using theorem of parallel axes find moment of inertia of a rod of mass m and length $2 a$ about a line through one end perpendicular to the rod.

Que. 2 (a) State and prove principle of conservation of energy .
(b) Obtain equation of motion of a particle in (i) cartesian form (ii) tangent and normal form .

OR

Que. 2 (a) State and prove principle of angular momentum of a system relative to the mass center .
(b) If the vector sum of the external forces is zero then prove that the linear momentum of the system is constant .

Que. 3 (a) Obtain the equation of motion of projectile with resistance in the form $x=x_{0}+u_{x} t-\frac{1}{2} \phi u_{x} t^{2} \quad ; \quad y=y_{0}+u_{y} t-\frac{1}{2} g t^{2}-\frac{1}{2} \phi u_{y} t^{2}\left(1-\frac{g t}{3 u_{y}}\right)$.
(b) Obtain differential equation of hodograph .

OR

Que. 3 (a) Obtain equation of path of projectile in the form $y=x \tan \alpha\left(1-\frac{x}{R}\right)$, where R is horizontal range. Hence prove that the angle of projection is given by $\tan ^{-1}\left[\frac{y}{x}\left(\frac{R}{R-x}\right)\right]$.
(b) Find the velocity of a particle at any point of its trajectory .

Que. 4 (a) If a particle moves in a central orbit under inverse square law then prove that its orbit is conic .Also determine the condition that a conic is an ellipse ,parabola or hyperbola.
(b) In usual notation prove that $v^{2}=\mu\left(\frac{2}{r}-\frac{1}{a}\right)$.

OR
Que. 4 (a) State and prove the theorem of parallel axes.

(b) Find the moment of inertia of a solid sphere of mass m and radius a about its diameter.

