V.P. & R.P.T.P. Science College, V.V.Nagar

Internal Test: 2013-14

T.Y.B.Sc. : Semester - 6 (CBCS)

Subject : Mathematics

US06CMTH03 Topology Max. Marks : 30

LIBRAF

VN

Date: 12/03/2014

Timing: 3.30 pm - 5.00pm

ní

Q: 1. Answer any THREE of the following.

- [1] Show that the sets \mathbb{R} and \emptyset are \mathcal{U} -open.
- **[2]** Define : (i) Topology (ii) Open Set

[3] Define : (i) Closure of a set (ii) Interior point

[4] Find the sets of cluster points of (1, 2] in \mathcal{U} -topology of \mathcal{R} .

- [5] Prove that discrete space that has more than one point disconnected
- [6] Assuming that connectedness is a topological property prove that (R, U) and (R, ψ) are not homeomorphic
- **Q: 2** [A] Let J be the set of all integers and \mathcal{T} be a collection of subsets G of J where $G \in \mathcal{T}$ whenever $G = \emptyset$ or $G \neq \emptyset$ and $p, p \pm 2, p \pm 4, ..., p \pm 2n, ...$ belong to G whenever $p \in G$. Prove that \mathcal{T} is a non-trivial topology for J

B Find three mutually non-comparable topologies of $X = \{a, b, c\}$

4

4

8

6

OR

Q: 2[A]	Show in two ways that if $a \in \mathbb{R}$ then $\{a\}$ is closed in the usual topology of \mathbb{R}	4
[B]	Are closed intervals of \mathbb{R} , \mathcal{U} -closed? where \mathcal{U} is the usual topology for \mathbb{R}	4
Q: 3 [A]	Let (X, \mathcal{T}) be a topological space and a A be a subset of X . Then prove that - (i) $Int(A) \subset A$ (ii) $Int(A)$ is a \mathcal{T} -open set	4
[B]	Find the \mathcal{U} -closure of each : (a) \mathbb{R} (b) \emptyset (c) $[0,1]$ (d) $[0,1)$	4
	OR	
Q: 3 [A]	Let (X, \mathcal{T}) be a topological space and let A be a subset of X . Then prove that $A^- = A \cup A'$ where A' be the set of all cluster points of A .	4
[B]	For any topologies \mathcal{T} and Ψ of \mathbb{R} show that the mapping $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = 2, \forall x \in \mathbb{R}$, is \mathcal{T} - Ψ continuous.	4
Q: 4 [A]	Prove that if (X, \mathcal{T}) is disconnected then there is a nonempty proper subset of X that is both \mathcal{T} -open and \mathcal{T} -closed.	4
[B]	Prove that a continuous image of connected space is connected.	4

OR

Q: 4. Prove that the space (R, U) is connected