VITHALBHAI PATEL\&RAJRATNA P.T. PATEL SCIENCE COLLEGE VALLABH VIDYANAGAR
 INTERNAL TEST - 2014
 B.Sc. (SEMESRET - VI)

Date: 15.03.2014
Time: 3.30 pm to 5.00 pm
Day: Saturday
Total marks:30

Subject: PHYSICAL CHEMISTRY (US06CCHE06)

Q-1 Give answers of any three questions.
(i) Define the terms catalyst and temperature co-efficient.
(ii) State Arrhenius equation. Why ' A ' is known as frequency factor?
(iii) Write the mathematical form of Boltzmann distribution law. Explain each term involved in it.
(iv) Calculate the rotational thermal energy of 3.2 gm of CH_{4} gas at $100^{\circ} \mathrm{C}$. (at.wt. $\mathrm{C}=12 . \mathrm{H}=1 \mathrm{gm} / \mathrm{mol} . \mathrm{R}=8.314 \mathrm{JKmol}^{\prime}$)
(v) Name the components of a typical HPLC unit.
(vi) Describe any two types of column packing in HPLC

Q-2 (a) For the thermal decomposition of ozone to oxygen, the following
mechanism has been suggested:
Step-1. $\mathrm{O}_{3} \underset{k-1}{\underset{k}{k} \mathrm{O}_{2}}+\mathrm{O}$
Step-1. $\mathrm{O}_{3}+\mathrm{O} \stackrel{\mathrm{k}_{\mathrm{E}}}{\mathrm{E}_{2}} 2 \mathrm{O}_{2}$
Use steady state approximation and other suitable approximation to account for the observed rate law, viz ., $\mathrm{r}=-\mathrm{k}\left[\mathrm{O}_{3}\right]^{2} /\left[\mathrm{O}_{2}\right]$.
(b) Discuss the effect of catalyst on the rate of areaction.

Q-2 (a)What is meant by mechanism of a reaction? Explain the equilibrium and
steady state approximations for the complex reaction.
(b) Consider the following Lindmann mechanism for the unimolecular
decomposition of a molecule A in the presence of an inert gas molecule M :
$A+A \underset{K-1}{K \xrightarrow[K]{K}} \quad A^{*}+A$
$A+M \underset{\underset{K}{k}-2}{\stackrel{k_{2}}{\Longrightarrow}} A^{\star}+M$
A* $\stackrel{k}{k} P$
Applying thesteady state approximation to A^{*}, derive the rate law for the formation of the product.
Q-3 (a) Derive an expression for rotational partition function of diatomic molecule.
(b) The vibrational band of HCl is centered at $2885 \mathrm{~cm}^{-}$. This represents the

(04) vibrational transition $v=0 \rightarrow v=1$. Calculate the force constant of HCl bond.
(at.wt. $\mathrm{Cl}=35.46, \quad \mathrm{H}=1 \mathrm{gm} / \mathrm{mol}$ and speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$).

OR

Q-3 (a) Derive an expression for vibrational thermal energy of diatomic molecule.
(b) Calculate the partition function for translational motion of O_{2} molecule free to move along one dimension of a one litre cubic container. Molar mass of oxygen is $32 \mathrm{~g} / \mathrm{mol}$ and $\mathrm{k}=1.38066 \times 10^{-23} \mathrm{JK}^{-}$.
Q-4 What are the important advantages of HPLC? Also discuss about the refractive index detector.

OR
Q-4 Describe various types of pumps used in HPLC, also discuss the effect of temperature on HPLC.

