VP \& RPTP Science College-Vallabh Vidyanagar
 First Internal Test: 2013

T Y B.Sc. [Semester-V]
Subject-Physics US05CPHY02
Time: 3.30 pm to 5.00 pm
Total Marks-30
Date: 01/10/2013 Tuesday
(i) If A is a matrix of order $m \times n ; B$ is a matrix of order $n \times m$ then $C=A B$ is a matrix of order
(a) $m \times m$
(b) $n \times m$
(c) $n \times n$
(d) $m \times n$
(ii) The condition for orthogonality for curvilinear co-ordinates is
(a) $\frac{\partial u}{\partial r} \cdot \frac{\partial v}{\partial r}=0$
(b) $\frac{\partial r}{\partial u} \cdot \frac{\partial u}{\partial v}=0$
(c) $\frac{\partial r}{\partial u} \cdot \frac{\partial r}{\partial v}=0$
(d) $\frac{\partial r}{\partial u} \cdot \frac{\partial r}{\partial u}=0$
(iii) For Fourier series in real form the coefficients a_{0} are given as
(a) $\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) d x$
(b) $\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x$
(c) $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x$
(d) $\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x$

(iv) The diffusion equation or Fourier equation of heat flow is
(a) $\frac{\partial u}{\partial t}=h \nabla^{2} u$
(b) $\frac{\partial u}{\partial t}=h^{2} \nabla^{2} u$
(c) $\frac{\partial^{2} u}{\partial t^{2}}=h^{2} \nabla^{2} u$
(d) $\frac{\partial u}{\partial t}=h^{2} \nabla u$
(v) $y=a x+b$ is the equation of
(a) Straight Line
(b) Straight line + curve
(c) Parabola
(d) Ellipse
(vi) The backward difference operator ∇ defined as
(a) $\nabla y_{i}=y_{i}-y_{i+1}$
(b) $\nabla y_{i}=y_{i+1}-y_{i}$
(c) $\nabla y_{i}=y_{i-1}-y_{i}$
(d) $\nabla y_{i}=y_{i}-y_{i-1}$

Q-2 Answer the following questions in short [Attempt any three].
(a) If $u=2 x+3 ; v=y-4 ; w=z+2$, show that u, v, w are orthogonal.
(b) Write 3×3 unit matrix and null matrix.
(c) Define Fourier series.
(d) Write one dimensional diffusion equation, which is known as telegraphy equation.
(e) Define and discuss interpolation.
(f) Convert $y=a e^{b x}$ in to equivalent equation of a straight line.

Q-3 Prove that the product of sets of two triads of mutually orthogonal vectors are reciprocal to each other.

OR

Q-3 Derive expression of curl in terms of orthogonal curvilinear system. 6
Q-4 Derive the expression of Fourier series for a periodic function $f(x)$ in the interval 6 $(-\pi, \pi)$.

OR

Q-4 Obtain Fourier series for a function $f(x)$, where

$$
f(x)=0 \text { for }-\pi<x<0 \text { and } f(x)=\pi x / 4 \text { for } 0<x<\pi
$$

Q-5 Deduce Lagrange's interpolation polynomial of the degree n.
Q-5 Using the method of least square find an equation that fits a straight line.

