Vitthalbhai Patel & Rajratna P.T.P.SCIENCE COLLEGE

VALLABH VIDYANAGAR B.Sc. (Semester - 5) Subject: Physics Course: US05CPHY01 Classical Mechanics First Internal Test

06

Date: 30/09/2013 Monday Time – 3:30 p.m to 5:00 p.m Total Marks – 30

Q-1 Multiple choice questions

(1) At the turning point in an arbitrary potential field the radial velocity is

(a) 1	(b) 0.5
(c) O	(d) 0.1
(2) For elliptical orbit the values of energy E and eccentricity E are	
(a) E=0 and $\in =1$	(b) E=0 and $\epsilon > 1$
(c) E< 0 and € < 1	(d) E>0 and € =0
(3) The Lagrange's equations of motion for a system is equivalent to	
equations	
of motion	
(a) Poisson	(b) Newton's
(c) Laplace	(d) Maxwell's
(4) The Hamiltonian function is define by	
(a) $H = F + V$	(b) $H = T - V$
(c) $H = T + V$	(d) $H = F - V$
(5) The equation of constraints is	for a cylinder rolling on inclined
plane	
$(a) r d\emptyset - dx = 0$	(b) $r d\theta - dx = 0$
(c) r dr - dx = 0	(d) $r dx - dx = 0$
(6) The equation of constraints for a simple pendulum is	
$(a) r d\theta - l = 0$	(b) $r + l = 0$
$(c) r d\theta + l = 0$	(d) $r - l = 0$

Q-2 Short Questions (Attempt any three)

- (1) Define equipotential surface
- (2) State the Gauss' law for the flux
- (3) State the D'Alembert's principle in words.
- (4) Define cyclic coordinates
- (5) Show that the Lagrangian and Newtonian equation are equivalent
- (6) What is undetermined multiplier?

Q-3

Derive the expressions of fields and potentials for dipole

06

06

06

OR

Q-3

Discuss the motion of a particle in a central force field and prove the conservation laws of linear momentum and total energy

Q-4

What are constraints? Explain, giving examples, the meaning of holonomic and nonholonomic constraints

OR

06 Derive the general expression of kinetic energy and find the kinetic energy of double pendulum from it

Q-5

Q-4

Construct the Lagrangian for motion of a particle on a sphere and derive the equations of motion using undetermined multiplier

OR

Q-5

Construct the Lagrangian for series connection of inductance L, resistance R and capacitor C with an external electromotive force $\varepsilon(t)$

06

06

Page 2 of 2

06