V.P.\& R.P.T.P.Science College. Vallabh Vidyanagar. Internal Test
B.Sc. Semester V
US05CMTH06 (Mechanics)
7/10/2013, Monday
3:30 p.m. to 5:00 p.m.

Maximum Marks: 30

Que. 1 Answer the following.
(1) 1 poundal $=$ \qquad dynes.
(a) 13862
(b) 13826
(c) 13268
(d) 13628
(2) If resultant of two force is maximum, then angle between them is \qquad
(a) $\frac{\pi}{2}$
(b) π
(c) 0°
(d) $\frac{\pi}{4}$
(3) If line of action of \bar{P} is parallel to a line L then mornent of \bar{P} about $\mathrm{L}=$ \qquad
(a) 0
(b) 2
(c) 1
(d) -1
(4) The force acting along on a particle are in equilibrium and angle between $P \& Q$ is $120, Q \& R$ is 90 , then the ratio of forces is $P: Q: R=$ \qquad
(a) $3: 1: 2$ (b) $-1: \sqrt{3}: 2$ (c) $-\sqrt{3}: 2: 1$ (d) $2: 1: \sqrt{3}$
(5) Transverse component acceleration of a particle moving in a plane is \qquad
(a) $\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right)$
(b) $\frac{1}{r} \frac{d}{d t}\left(r^{2} \theta\right)$
(c) $\frac{1}{r^{2}} \frac{d}{d t}\left(r^{2} \dot{\theta}\right)$
(d) $\frac{1}{r^{2}} \frac{d}{d t}(r \dot{\theta})$
(6) If a particle moves in a plane with constant speed then $\angle(\bar{a}, \bar{v})=$ \qquad
(a) π
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{4}$
(d) 0

Que. 2 Answer the following. (Any three)
(1) If $V=x^{2}+y^{2}+z^{2}+x y+x$, then at which points in the space vector grad V is parallel to Z-axis?
(2) If two forces \bar{P}, \bar{Q} are acting along a same line but opposite direction, then prove that magnitude of their resultant is $R=|P-Q|$.
(3) Three forces acting at a point are in equilibrium. If the angle between first and second is 90°, second and third is 120°, then find out the proportion of forces.
(4) If particle is in equilibrium under the action of forces $1,1, \sqrt{3} \mathrm{lb} . w \mathrm{t}$. How do they act?
(5) In usual notation prove that $s^{2}=y^{2}+2 c y$.
(6) Define hodograph and derive the hodograph for a particle moving in a circle with constant speed.
Que. 3 Find the component of gradient of V along a co-ordinate axis.

OR

Que. 3 A particle moves on a straight line under a retardation $K v^{m+1}$, where v is the velocity at time t. Show that
(i) $K s=\frac{1}{m-1}\left[\frac{1}{v^{m-1}}-\frac{1}{u^{m-1}}\right]$
(ii) $K t=\frac{1}{m}\left[\frac{1}{v^{m}}-\frac{1}{u^{m}}\right]$, where u is initial velocity.

Que. 4 A door of weight w, height 2 a , width 2 b is hinged at top and bottom . If the reaction at upper hinge has no vertical component, find the components of reaction at both hinge, assume that the weight of the door acts at it's center . Determine this reaction for a door of weight 34.5 1 l wt and measuring 6 ft 10 in by 3 ft 2 in .

OR

Que. 4 State and prove theorem of Varignon.

Que. 5 Obtain the general equation of common catenary in the form $y=c\left(\cosh \frac{1}{c}-1\right)$ and hence prove that $y=c\left(\cosh \frac{x}{c}\right)$.

OR

Que. 5 A particle moves in a catenary $S=c \tan \psi$. The direction of its acceleration at a point makes equal angle with the tangent and normal to the path at the point. If the speed at the vertex where $\psi=0$ is u then show that the velocity and resultant acceleration at any point are given by $u e^{\psi}$ and $\frac{\sqrt{2} u^{2} u^{2 \psi} \cos ^{2} \psi}{c}$ respectively.

