V.P.\& R.P.T.P.Science College.Vallabh Vidyanagar.

Internal Test
B.Sc. Semester V

US05CMTH05 (Number Theory)
5/10/2013, Saturday
3.30 p.m. to 5.00 p.m.

Maximum Marks: 30

Que. 1 Fill in the blanks.
(1) $(4676,366)=$ \qquad ...
(a) 2 (b)
6 (c) $4(\mathrm{~d})$
1
(2) $[12,30]=$
(a) 6 (b)
60 (c)
360 (d)
30
(3) If a is square number then $S(a)$ is
(a) even
(b) odd
(c) prime
(d) 0
(4)
(a) 16
(b) 6
(c) 15
(d) 31

(5) $a x+b y=c$ has integer solution if and only if
(a) $\quad(a, b)=a \quad$ (b)
$(\mathrm{a}, \mathrm{b})=\mathrm{b}(\mathrm{c})$
$(a, b) / c(\mathrm{~d}) \quad c /(a, b)$.
(6) 765432 is divided by
(a) 5
(b) 3 (c)
11 (d)
13

Que. 2 Answer the following (Any three)
(1) Find ged of two numbers by using Euclidean algorithm .
(2) Prove that $(a+b)[a, b]=b[a, a+b], \forall a, b>0$.
(3) If a is not square number but odd integer then prove that $S(a)$ is even integer .
(4) If $m=q n+r$ then prove that $\left(u_{m}, u_{n}\right)=\left(u_{n}, u_{r}\right)$.
(5) If $c a \equiv c b(\bmod n)$ and $(c, n)=1$ then prove that $a \equiv b(\bmod n)$.
(6) If $a_{1} \equiv b_{1}(\bmod n)$, then prove that $a_{1}^{m} \equiv b_{1}^{m}(\bmod n), \forall m \in \mathbb{N}$, by using mathematical induction method.

Que. 3 Let g be a positive integer greater than 1 then prove that every positive integer a can be written uniquely in the form
$a=c_{n} g^{n}+c_{n-1} g^{n-1}+\ldots . .+c_{1} g+c_{0}$, where $n \geq 0, c_{i} \in \mathbb{Z}, 0 \leq c_{i}<g, c_{n} \neq 0$.

OR

Que. 3 State and prove unique factorization theorem for positive integers.
Que. 4 Prove that every prime factor of $F_{n}(n>2)$ is of the form $2^{n+2} t+1$, for some integer t.

OR

Que. 4 Prove that odd prime factor of $M_{p}(p>2)$ has the form $2 p t+1$, for some integer t.

Que. 5 Prove that the integer solution of $x^{2}+2 y^{2}=z^{2},(x, y)=1$ can be expressed as $x= \pm\left(a^{2}-2 b^{2}\right), y=2 a b, z=a^{2}+2 b^{2}$.

OR
Que. 5 Solve the equation $19 x+20 y=1909$.

