V.P. & R.P.T.P. Science College, V.V.Nagar

Internal Test: 2013-14

T.Y.B.Sc. : Semester - V (CBCS)

Subject : Mathematics

US05CMTH03 Metric Spaces

Max. Marks : 30

Date: 03/10/2013

Timing: 3.30 pm - 5.00pm

is not always convergent

Instructions : (1) This question paper contains FIVE QUESTIONS(2) The figures to the right side indicate full marks of the corresponding question/s(3) The symbols used in the paper have their usual meaning, unless specified

Q: 1. Answer the following by choosing correct answers from given choices.

- $\begin{bmatrix} 1 \end{bmatrix}$ Every function defined on R_d is
 - [A] continuous
 - [B] discontinuous
 - [C] continuous only at rational points
 - [D] continuous only at irrational points
- [2] Every Cauchy sequence is
 - [A] convergent
 - [C] divergent
- ith annual matuin

none

B

[D]

- [3] In the metric space M = [0, 1] with usual metric, $B[\frac{1}{4}, 1] =$
 - [A] [0,1] [B] $[\frac{1}{4},1]$
 - [C] $[0, \frac{1}{4}]$ [D] (0, 1)

 $\begin{bmatrix} 4 \end{bmatrix}$ The set $\{1, 2, 3, 4\}$ is

- [A] open in R_d but closed in R^1 [B] open in R_d and R^1 both
- [C] closed in R_d but open in R^1 [D] none
- $\begin{bmatrix} 5 \end{bmatrix}$ The range of a continuous function f defined on [1, 2] is
 - [A] unbounded [B] compact
 - [C] not compact [D] none

LIBRARY COME

6

[6] Every finite subset of a metric space is

- [A] unbounded [B] compact
- [C] not compact [D]

Q: 2. Answer any THREE of the following.

- [1] Define : (i) Metric Space (ii) Cluster Point
- [2] Let (M, d) be a metric space and let $d^*(x, y) = min\{1, d(x, y)\}$. Then prove that d^* is a metric on M

none

- [3] Define (i) Connected set (ii) Limit point
- [4] Prove that every constant function $f: \mathbb{R}^1 \longrightarrow \mathbb{R}^1$ is continuous
- [5] Prove that $g(x) = \sqrt{x}, x \in [0, \infty)$ is continuous on $[0, \infty)$
- [6] Show that the range of a continuous function, on a compact metric space, is bounded.
- **Q:** 3. Prove that a real valued function f is continuous at $a \in R$ iff

$$\lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = f(a)$$

OR

- **Q: 3.** Define Cauchy Sequence. Also prove that if $\{s_n\}_{n=1}^{\infty}$ is a convergent sequence of points in a metric space (M, ρ) then $\{s_n\}_{n=1}^{\infty}$ is Cauchy. Is the converse true? Justify.
- **Q:** 4 [A] Prove that if F_1 and F_2 are closed subsets of a metric space M then $F_1 \cup F_2$ is closed in M
 - **B** If E is any subset of a metric space M then prove that \overline{E} is closed in M

OR

Q: 4. Define a Connected Set. Also Prove that a subset A of R^1 is connected iff whenever $a \in A$, $b \in A$ with a < b, then $c \in A$ for every c such that a < c < b.

Q: 5 [A] Let f be a real valued continuous function on [a, b]. Then prove that f is bounded.

[B] Give an example of a function which is one-one, onto, continuous but its inverse is not continuous.

OR

Q: 5. Let (M_1, ρ_1) be a metric space and let A be a dense subset of M_1 . If f is a uniformly continuous function from (A, ρ_1) into a complete metric space (M_2, ρ_2) then prove that f can be extended to a uniformly continuous function F from M_1 into M_2 .

2

6

6

3

3

6

3

3

6