V.P. \& R.P.T.P. Science College,V.V.Nagar

> Internal Test : 2013-14
T.Y.B.Sc. : Semester - V (CBCS)

Subject: Mathematics
US05CMTH02 Real Analysis-II

Date: 01/10/2013

$$
\text { Timing: } 3.30 \mathrm{pm}-5.00 \mathrm{pm}
$$

Instructions: (1) This question paper contains FIVE QUESTIONS
(2) The figures to the right side indicate full marks of the corresponding question/s
(3) The symbols used in the paper have their usual meaning, unless specified

Q:1. Answer the following by choosing correct answers from given choices.
[1] The sequence $\left\{S_{n}\right\}_{n=1}^{\infty}$, where $S_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)$
[A] is convergent
[B] oscillates finitely
[C] oscillates infinitely
[D] is divergent
[2] Every convergent sequence is
[A] oscillating
[B] bounded
[C] unbounded
[D] none

[3] A positive term series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if and only if
[A] $p<1$
[B] $\quad p>1$
[C] $p \leqslant 1$
[D] $p \geqslant 1$
[4] The positive term series $\sum_{n=1}^{\infty} u_{n}$ is convergent if
[A] $\sum_{n=1}^{\infty} \frac{u_{n+1}}{u_{n}}=1$
[B] $\sum_{n=1}^{\infty} \frac{u_{n+1}}{u_{n}}<1$
[C] $\sum_{n=1}^{\infty} \frac{u_{n+1}}{u_{n}}>1$
[D] none
[5] If $f(x, y)=x^{3} y^{3}-3 x^{2} y^{2}$ then $f_{y}(0,1)=$
[A] 0
[B] 1
[C] 2
[D] 3
[6] $\lim _{(x, y) \rightarrow(4, \pi)} x^{2} \sin \frac{y}{x}=$
[A] 8
[B] $-8 \sqrt{2}$
[C] $8 \sqrt{2}$
[D] 0

Q:2. Answer any THREE of the following.
[1] For any number x show that $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$
[2] Using the definition of limit show that $\lim _{x \rightarrow-2} 3 x+7=1$
[3] If $\sum_{n=1}^{\infty} u_{n}=u$ and $\sum_{n=1}^{\infty} v_{n}=v$ then prove that $\sum_{n=1}^{\infty}\left(u_{n}+v_{n}\right)=u+v$
[4] Test for convergence of the series whose general term is $\frac{2 n+1}{n}$
[5] If

$$
f(x, y)=\left\{\begin{array}{ll}
x^{2}+2 y & ; \text { when }(x, y) \neq(1,2) \\
0 & ;
\end{array} \text { when }(x, y) \neq(1,2)\right.
$$

then show that f is discontinuous at $(1,2)$
[6] Evaluate: $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin ^{-1}(x y-2)}{\tan ^{-1}(3 x y-6)}$
Q:3. Define Convergent Sequence and show that every convergent sequence is bounded and has a unique limit.

OR

Q:3. Show that the sequence $\left\{r^{r}\right\}$ converges iff $-1<r \leq 1$.
Q: 4 [A] Prove that a positive term series is convergent it and only if the sequence of its partial sums is bounded above.
[B] Investigate the behaviour of the series whose $n^{\text {th }}$ term is $\sin \frac{1}{n}$

OR

Q:4. State and prove the D'-Alembert's Ratio test
6
Q: 5. If V is a function of two variables x and y and $x=r \cos \theta, y=r \sin \theta$ then prove that

$$
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}
$$

OR

Q: 5. Show that $f(x y, z-2 x)=0$ satisfies, under suitable conditions, the equation $x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}=2 x$. What are these conditions?

