V.P. \& R.P.T.P. Science College, V.V.Nagar

Internal Test : 2013-14
T.Y.B.Sc. : Semester - V (CBCS)

Subject: Mathematics

Date: 30/09/2013
US05CMTH01
Max. Marks : 30
Real Analysis-I

Instructions: (1) This question paper contains FIVE QUESTIONS
(2) The figures to the right side indicate full marks of the corresponding question/s
(3) The symbols used in the paper have their usual meaning, unless specified

Q: 1. Answer the following by choosing correct answers from given choices.
[1] If S is a non-empty and bounded above subset of R then there exists
[A] supremum of S in Q
[B] infimum of S in Q
[C] supremim of S in R
[D] infimum of S in R
[2] The infimum of the set $-1,1,-1 \frac{1}{2}, 1 \frac{1}{2},-1 \frac{1}{3}, 1 \frac{1}{3}, \ldots$
[A] -1
[B] 0
[C] $-1 \frac{1}{2}$
[D] $\frac{1}{2}$
[3] For $S=(1,4) \cup\{5,6\}, 4$ is
[A] a limit point of S

[B] an interior point of S
[C] interior point as well as limit point of S
[D] none
[4] In $\left(0, \frac{\pi}{2}\right)$ function $C(x)$ is
[A] strictly increasing
[B] strictly decreasing
[C] stationary
[D] none

$$
\text { [5] } \lim _{x \rightarrow 0-} e^{\frac{1}{x}}=
$$

[A] 0
[B] 1
$[\mathrm{C}] \infty$
[D] $-\infty$
[6] If $\lim _{x \rightarrow a-} f(x)$ and $\lim _{x \rightarrow a+} f(x)$ both do not exist then then f is said to have a . discontinuity of
[A] removable type
[B] first type
[C] second type
[D] first type from right

Q:2. Answer any THREE of the following.
[1] Define Complete Ordered Field.
[2] Find the g.l.b and l.u.b. of $\left\{1+\frac{(-1)^{n}}{2} / n \in N\right\}$ if they exist.
[3] Determine whether the interior of the set $[2,8] \cup(9,10) \cap N$ is open or not.
[4] Find the set of all the interior points of $\{1,2,3, e, \pi\}$
[5] Prove that the function deined on \Re by

$$
f(x)=\left\{\begin{array}{cl}
-1 ; & \text { when } \mathrm{x} \text { is irrational } \\
1 ; & \text { when } \mathrm{x} \text { is rational }
\end{array}\right.
$$

is not continuous at every point
[6] Examine the function

$$
f(x)=\left\{\begin{array}{l}
x^{2}+2 x \text { when } x \neq 3 \\
15, \quad \text { when } x=3
\end{array}\right.
$$

for continuity at $x=3$
Q: 3. Prove that the set of rational numbers is not order complete.

Q: 3 [A] State and prove the Archimedean property of R and deduce that for any real number c there exists a positive integer n such that $n>c$.
[B] In usual notations prove that $L(a b)=L(a) \cdot L(b)$.
Q: 4. Show that every bounded infinite set has the smallest and the greatest limit point.

OR

Q: 4 [A] Show that the interior of a set is an open set.
[B] Show that every open set is a union of open intervals.
Q: 5. If a function f is continuous on $[a, b]$ and $f(a)$ and $f(b)$ are of opposite signs, then there exists at least one point $\alpha \in(a, b)$ such that $f(\alpha)=0$.

OR
Q:5. Show that a function $f:[a, b] \rightarrow \Re$ is continuous at point c of $[\mathrm{a}, \mathrm{b}]$ iff

$$
\lim _{n \rightarrow \infty} c_{n}=c \Longrightarrow \lim _{n \rightarrow \infty} f\left(c_{n}\right)=f(c)
$$

