V.P. & R.P.T.P. Science College, V.V.Nagar

Internal Test : 2013-14

T.Y.B.Sc. : Semester - V (CBCS)

Subject : Mathematics

US05CMTH01 Real Analysis-I

Max. Marks: 30

Date: 30/09/2013

Timing: 3.30 pm - 5.00pm

Instructions : (1) This question paper contains FIVE QUESTIONS

(2) The figures to the right side indicate full marks of the corresponding question/s

(3) The symbols used in the paper have their usual meaning, unless specified

6 Q: 1. Answer the following by choosing correct answers from given choices. $\begin{bmatrix} 1 \end{bmatrix}$ If S is a non-empty and bounded above subset of R then there exists supremum of S in Q[A][B] infimum of S in Q supremim of S in R [D] infimum of S in R[C] $[\ 2] \ {\rm The \ infimum \ of \ the \ set \ -1, 1, -1\frac{1}{2}, 1\frac{1}{2}, -1\frac{1}{3}, 1\frac{1}{3}, \ldots}$ [A] -1 [B] 0 Scie $[C] -1\frac{1}{2}$ [D]LIBRAF [3] For $S = (1, 4) \cup \{5, 6\}$, 4 is [A] a limit point of S [B] an interior point of S interior point as well as limit point of S[C][D] none $\begin{bmatrix} 4 \end{bmatrix}$ In $(0, \frac{\pi}{2})$ function C(x) is [A] strictly increasing [B] strictly decreasing [C] stationary [D]none $\begin{bmatrix} 5 \end{bmatrix} \lim_{x \to 0^-} e^{\frac{1}{x}} =$ $\begin{bmatrix} A \end{bmatrix} = 0$ [B]1 $[C] \infty$ $[D] -\infty$

- [6] If $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ both do not exist then then f is said to have a discontinuity of
 - [A] removable type [B] first type
 - [C] second type
- [D] first type from right
- Q: 2. Answer any THREE of the following.
 - [1] Define Complete Ordered Field.
 - [2] Find the g.l.b and l.u.b. of $\left\{1 + \frac{(-1)^n}{2} \ /n \in N\right\}$ if they exist.
 - [3] Determine whether the interior of the set $[2, 8] \cup (9, 10) \cap N$ is open or not.
 - [4] Find the set of all the interior points of $\{1, 2, 3, e, \pi\}$
 - $\begin{bmatrix} 5 \end{bmatrix}$ Prove that the function deined on \Re by

$$f(x) = \begin{cases} -1 ; & \text{when x is irrational} \\ 1 ; & \text{when x is rational} \end{cases}$$

is not continuous at every point

[6] Examine the function

$$f(x) = \begin{cases} x^2 + 2x \text{ when } x \neq 3\\ 15, \text{ when } x = 3 \end{cases}$$

for continuity at x = 3

Q: 3. Prove that the set of rational numbers is not order complete.

OR

Q: 3 [A]	State and prove the Archimedean property of R and deduce that for any real number c there exists a positive integer n such that $n > c$.	3
[B]	In usual notations prove that $L(ab) = L(a).L(b)$.	3
Q: 4.	Show that every bounded infinite set has the smallest and the greatest limit point.	6
*	OR	
Q: 4 [A]	Show that the interior of a set is an open set.	3
[B]	Show that every open set is a union of open intervals.	3
Q: 5.	If a function f is continuous on $[a, b]$ and $f(a)$ and $f(b)$ are of opposite signs, then there exists at least one point $\alpha \in (a, b)$ such that $f(\alpha) = 0$.	6
	OD	

OR

Q: 5. Show that a function $f : [a, b] \to \Re$ is continuous at point c of [a,b] iff

$$\lim_{n \to \infty} c_n = c \Longrightarrow \lim_{n \to \infty} f(c_n) = f(c)$$

6

6

6