V.P. \& R.P.T.P. Science College,V.V.Nagar

Internal Test: 2013-14
S.Y.B.Sc. : Semester - IV (CBCS)

Subject: Mathematics
US04CMTH02
Max. Marks : 30
Differential Equations
Date: 15/03/2014
Timing: $1.00 \mathrm{pm}-2.30 \mathrm{pm}$

Q: 1. Answer any THREE of the following.
[1] Discuss the method of obtaining orthogonal trajectories of a system of curves.
[2] Find the integral curves of the equations $x \cdot d x=y \cdot d y=z \cdot d z$
[3] Obtain partial differential equation of $a x-b y+4 z=12$
[4] Examine whether $a x-b y+z=7$ is a solution of $p x+q y-z+7=0$ or not
[5] Determine whether the equation $y d x+x d y=5 z d z$ is integrable or not.

[6] Obtain partial differential equation of $a x-b y+4 z=12$
Q: 2 [A] Find the orthogonal trajectories on the conicoid $(x+y) z=1$ of the conics in
which it is cut by the system of planes $x-y+z=k$

4
[B] Solve : $\frac{d x}{x+z}=\frac{d y}{y}=\frac{d z}{z+y^{2}}$
OR

Q: 2 [A] Find the orthogonal trajectories of hyperboloids $x^{2}+y^{2}-z^{2}=1$ of the conics in which it is cut by the planes $x+y=c$

4
[B] Find the integral curves of the equations

$$
\frac{d x}{y(x+y)+a z}=\frac{d y}{x(x+y)-a z}=\frac{d z}{z(x+y)}
$$

Q: 3 [A] Prove that a Pfaffian differential equation in two variables always possesses an integrating factor

4
[B] Solve : $y^{2} p-x y q=x(z-2 y)$

OR

Q: 3 [A] If $f(u, v)=0$ is a relation between u and v, where u and v are functions of x, y, z and z is a function of x and y then prove that partial differential equation of the relation is given by

$$
\frac{\partial(u, v)}{\partial(y, z)} p+\frac{\partial(u, v)}{\partial(z, x)} q=\frac{\partial(u, v)}{\partial(x, y)}
$$

[B] Determine whether the Pfaffian differential equation $z(z+y) d x+z(z+x) d y-2 x y d z=0$ is integrable or not. Find its solution if it is integrable

Q: $4[\mathrm{~A}]$ Find the surface which is orthogonal to the surface $z(x+y)=c(3 z+1)$ and which passes through the circle $x^{2}+y^{2}=1, z=1$
[B] Find the integral surface of the equation $x^{2} p+y^{2} q=-z^{2}$ which passes through the hyperbola $x y=x+y, \quad z=1$

OR

Q: 4 [A] Define Complete Integral. Also verify $z^{2}+\mu=2\left(1+\lambda^{-1}\right)(x+\lambda y)$ is a complete integral of partial differential equation $z=\frac{1}{p}+\frac{1}{q}$. Also show that the complete integral is the envelope of the one-parameter subsystem obtained by taking $b=-\frac{a}{\lambda}-\frac{\mu}{1+\lambda}$ in the solution $z=\sqrt{2 x+a}+\sqrt{2 y+b}$.

