V. P. \& R. P. T. P. SCIENCE COLLEGE, V. V. NAGAR. INTERNAL TEST: MARCH-2014
 S. Y. B. Sc. Semester-IV
 Sub.:- Inorganic Chemistry (US04CCHE01)

Total Marks:30
Time: 1.00 P.M. To 2.30 P.M.
Date: 12/03/2014
Day: Wednesday
Note: (i) All questions are to be attempted.
(ii) Figures to the right of each question indicate full marks.

Q:1 Answers the following short questions(any three).
(1) How solid $\mathrm{V}_{2} \mathrm{O}_{5}$ acts as catalyst during the conversion of SO_{2} to SO_{3}.
(2) Which d-block elements of 3d series show anomalous electronic configuration and give their correct configuration.
(3)Define EAN of central metal ion in co-ordination compound and calculate EAN of Cr^{3+} ion in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$.
(4) Give the molecular formula of all the hydrate isomers of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and its physical properties.
(5) Give general electronic configuration of Lanthanides and Actinides.
(6) What is meant by lanthanide contraction?

Q:2[A]Give the name, symbol, complete and valence shell electronic configuration of $2^{\text {nd }}$ transition series elements.
[B]How will you determine the paramagnetic or diamagnetic nature of a given substance?

OR

Q : 2[A]Classify d-block elements and discuss any two series.
[B]Discuss the variable oxidation states shown by d-block elements of $1^{\text {st }}$ transition series under headings:
(i)Acidic/basic character of the compounds
(iii) Relative stability of various oxidation states.

Q:3[A]Write note on optical isomerism found in octahedral complexes.
[B]On the basis of EAN rule, predict the number of unpaired electrons and [4] μ value of the following complexes : (i) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (ii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$

OR
Q : 3[A] Justify, optical isomerism rarely occurs in square planar complexes. [4]
[B]Arrange the following complexes in the increasing order of their electrical conductivity : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right],\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$,
Q : 4[A] Define lanthanides. Give the name, symbol, atomic number and electronic configuration of lanthanides.
[B] Discuss the various oxidation states exhibited by actinides.

OR

Q : $4[\mathrm{~A}]$ Discuss the position of lanthanides in periodic table.
[B] Give the brief account on consequences of lanthanide contraction.

