V.P. & R.P.T.P. Science College S Y BSc (SEMESTER III) Internal EXAMNINATION US03ECSC01 : Digital Computer & Electronics

Date:	04/10/2013, FRIDAY Time: 01.00PM to 02.00PM	Marks: 30
Q.1 1.	Multiple Choice QuestionsThe gate has two or more input signals. All inputs must be hito get a high output.[a] AND[b] OR[c] NAND[d] NOR	[06] gh
2.	De Morgan's first theorem says that a NOR gate is equivalent to a[a] bubbled OR[b] bubbled NOR[c] bubbled AND[d] AND bubbled	
3.	A is a combinational circuit that converts binary informationfrom the n coded inputs to a maximum of 2 ⁿ unique outputs.[a] Half Adder[b] Decoder[c] Encoder[d] Comparator	College College
4.	is way to simplify the equation. [a] Boolean Algebra [b] K-MAP [c] BOTH [d] None	L. V. Nagat
5.	Half adder consists of& Gates.[a] XOR, AND[b] XOR, OR[c] XNOR, AND[d] XNOR, O	PR
6.	The full adder circuit addsdigit at a time.[a] 1[b] 2[c] 3[d] None	
Q.2	 Answer the following in short (Any Three) 1. Explain Associative low and distributive low. 2. Explain De'morgan second theorem. 3. Short note on comparator. 4. Explain sum of product (SOP). 5. Explain half adder in detail. 6. Draw the circuit and truth table of full adder. 	[06]
Q.3	Explain NOR, NAND and XNOR gate.	[06]
Q.3	Simplify Boolean expression and draw circuit for [a] AB'+C'D+AB+CD [b] ABC'+ABC+A'BC.	[06]
Q.4	Define encoder. Explain 8x3 Encoder in detail. OR	[06]
Q.4	Simplify the following using K-Map : [a] $F(A,B,C)=J(4,6,2)$ [b] $F(A,B,C,D)=\sum(1,3,5,6,8,11,15)$	[06]
Q.5	What is Multiplexer? Explain 4x1 multiplexer in detail. OR	[06]
Q.5	Explain binary adder-subtractor in detail.	[06]

Best Of Luck