V.P. & R.P.T.P. Science College, V.V.Nagar

Internal Test: 2013-14

- S.Y.B.Sc. : Semester - III (CBCS)

Subject : Mathematics

US03CMTH02 Numerical Analysis

Max. Marks: 30

1

Date: 07/10/2013

Timing: 01.00 pm - 02.30pm

Instructions : (1) This question paper contains FIVE QUESTIONS(2) The figures to the right side indicate full marks of the corresponding question/s

(3) The symbols used in the paper have their usual meaning, unless specified

Q: 1. Answer the following by choosing correct answers from given choices.

 Initial approximations of root of an equation by Iterations method can be used for, further appoximation by

[A] Aitken's Δ^2 -Process []

- [B] Bisection method
- [C] False position method [D] none

[2] Initial approximation of $x^3 - x - 2 = 0$ can be chosen from

- [A] [0,1] [B] [-1,0] [C] [1,2] [D] [-2,-1]
- $\begin{bmatrix} 3 \end{bmatrix} E y_n y_n = \\ \begin{bmatrix} A \end{bmatrix} \Delta y_n \qquad \begin{bmatrix} B \end{bmatrix} \nabla y_n \qquad \begin{bmatrix} C \end{bmatrix} \Delta y_{n-1} \qquad \begin{bmatrix} D \end{bmatrix} \nabla y_{n-1}$

[4] If $\Delta y_5 = 5$ and $y_6 = 11$ then $y_5 =$ [A] 16 [B] -16 [C] -6 [D] 6

- [5] The divided differences are
 - [A] not dependent on their arguments
 - [B] symetrical in their arguments
 - [C]. not symetrical in their arguments
 - [D] none

[6]	For the given data	x v	$\frac{x_0 = 3}{5}$	$x_1 = 4$ 8	x_2	= 5	$x_3 = 6$ 15	$x_4 = 7$ 23	$x_5 = 8$ 30
	$[x_1 \ x_2 \ x_3] =$		1.4.17.1			*			
	[A] 1			[B]	2			
•	[C] 3			[D]	none	9		

6

1

- 1] Discuss the False Position method for approximation
- 2] Find an interval containing an initial approximation of $2x^2 x 3 = 0$
- 3] Prove that $\Delta = E 1$
- 4] Prove that $\delta = E^{\frac{1}{2}} E^{-\frac{1}{2}}$
- 5] Using Langrage's interpolation formula express the following function as a sum of partial fractions

$$\frac{3x^2 + x + 1}{(x-1)(x-2)(x-3)}$$

[6] Show that the divided differences are symetrical in their arguments

State and prove the condition on $\phi(x)$ in Iteration method for convergence of a Q: 3. sequence of approximations.

OR

- Find a real root of $x \sin x + \cos x = 0$, correct up to three decimal places, by .Q: 3. Newton-Raphson method
- Q: 4 [A] Derive Gauss's Backward interpolation formula for equally spaced values of argument
 - [B] Locate and correct error in the following table of values

X	1	2	3	4	5	6	7	8
у	3010	3424	3802	4105	4472	4771	5051	5315

Q: 4. Using Gauss's forward interpolation formula find f(32), given that

$$f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794$$

Q: 5 [A] Using mathematical induction, in usual notations prove that

$$[x_0, x_1, x_2, x_3, ..., x_n] = \frac{1}{h^n . n!} \Delta^n y_0$$

[B] Derive Newton's divided difference formula

OR

Q: 5.

From the following table, find x correct up to two decimal places, for which y is maximum and find the value of y

x	. 1.2	1.3	1.4	1.5	1.6
y = f(x)	0.9320	0.9636	0.9855	0.9975	0.9996

Nac

2

6

6

6

3

3

6

6