V.P. \&.R.P.T.P. Science College, V.V.Nagar

Internal Test: 2013-14

- S. Y.B.Sc. : Semester - III (CBCS)

Max. Marks : 30

Date: 07/10/2013
Timing: $01.00 \mathrm{pm}-02.30 \mathrm{pm}$

[^0]Q: 1. Answer the following by choosing correct answers from given choices.
[1] Initial approximations of root of an equation by Iterations method can be used for, further appoximation by
[A]. Aitken's Δ^{2}-Process
[B] Bisection method
[C] False position method
[D] none
[2] Initial approximation of $x^{3}-x-2=0$ can be chosen from
(A] $[0,1]$
[B] $[-1,0]$
[C] $[1,2]$
[D] $[-2,-1]$

3] $E y_{n}-y_{i i}=$
[A] Δy_{n}
[B] ∇y_{n}
[C] Δy_{n-1}
[D] ∇y_{n-1}
[4] If $\Delta y_{5}=5$ and $y_{6}=11$ then $y_{5}=$
[A] 16
[B] -16
[C] -6
[D] 6
[5] The divided differences are
[A] not dependent on their arguments
[B] symetrical in their arguments
[C]. not symetrical in their arguments
[D) none

6] For the given data | x | $x_{0}=3$ | $x_{1}=4$ | $x_{2}=5$ | ${ }^{\prime} x_{3}=6$ | $x_{4}=7$ | $x_{5}=8$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 5 | 8 | 11. | 15 | 23 | 30 | $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]=$

[A] 1
[C] 3
[D] none

Q:2. Answer any THREE of the following.
[1] Discuss the False Position method for approximation
[2] Find an interval containing an initial approximation of $2 x^{2}-x-3=0$
[3] Prove that $. \Delta=E-1$
[4] Prove that $\delta=E^{\frac{1}{2}}-E^{-\frac{1}{2}}$
[5] Using Langrage's interpolation formula express the following function as a sum of partial fractions

$$
\frac{3 x^{2}+x+1}{(x-1)(x-2)(x-3)}
$$

[6] Show that the divided differences are symetrical in their arguments
Q:3. State and prove the condition on $\phi(x)$ in Iteration method for convergence of a sequence of approximations.

OR

Q: 3. Find a real root of $x \sin x+\cos x=0$, correct upto three decimal places, 1 by Newton-Raphson method

Q: 4 [A] Derive Gauss's Backward interpolation formula for equally spaced values of argument
[B] Locate and correct error in the following table of values

x	1	2	3	4	5	6	7	8
y	3010	3424	3802	4105	4472	4771	5051	5315

OR

Q: 4. . Using Gauss's forward interpolation formula find $f(32)$, given that

$$
f(25)=0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794
$$

Q: $5[\mathrm{~A}]$ Using mathematical induction, in usual notations prove that

$$
\left[x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right]=\frac{1}{h^{n} \cdot n!} \Delta^{n} y_{0}
$$

[B] Derive Newton's divided difference formula

Q: 5. From the following table, find x correct upto two decimal places , for which y is maximum and find the value of y

x	1.2	1.3	1.4	1.5	1.6
$y=f(x)$	0.9320	0.9636	0.9855	0.9975	0.9996

[^0]: Instructions: (1) This question paper contains FIVE QUESTIONS
 (2) The figures to the right side indicate full marks of the corresponding question/s
 (3) The symbols used in the paper have their usual meaning, unless specified

