V.P. \& R.P.T.P. Science College,V.V.Nagar

Internal Test: 2017-18
Subject: Mathematics US02CMTH02 Max. Marks: 25
Matrix Algebra and Differential Equations
Date: 20/03/2018
Timing: 01:30 pm - 02:30 pm

Q: 1. Answer the following by choosing correct answers from given choices.
[1] Matrix $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 0 \\ 4 & 0 & 1\end{array}\right]$ is a
[A] scalar matrix
[B] diagonal matrix
[C] symmetric matrix
[D] skew-symmetric matrix
[2] Matrix $P=\left[\begin{array}{cc}6 & -7 \\ 12 & -14\end{array}\right]$ is
[A] orthogonal
[B] singular
[C] non-singular
[D] none
[3] The Complementary Function of $\left(D^{2}+4\right) y=X$ is
[A] $c_{1} \cos \sqrt{2} x+c_{2} \sin \sqrt{2} x$
[B] $c_{1} \cos 2 x+c_{2} \sin 2 x$
[C] $c_{1} e^{2 x}+c_{2} e^{-2 x}$
[D] $c_{1} e^{4 x}+c_{2} e^{-4 x}$

Q: 2. Answer any TWO of the following.
[1] Define: (i) Transpose of a matrix (ii) Identity Matrix
[2] Find the characteristic equation of $\left[\begin{array}{cc}2 & 4 \\ 1 & -5\end{array}\right]$.
[3] Find $\frac{1}{(D+2)^{3}} e^{-2 x}$
Q: 3 [A] Prove that every Hermitian matrix over \mathbb{C} can be uniquely expressed as $P+i Q$, where P and Q are real symmetric and skew-symmetric matrices respectively
[B] If $A=\left[\begin{array}{cc}3 & -4 \\ 1 & -1\end{array}\right]$ then show that $A^{k}=\left[\begin{array}{cc}1+2 k & -4 k \\ k & 1-2 k\end{array}\right]$ where k is any positive integer
OR

Q: 3 [A] State and prove the reversal law for the transpose of product of matrices and deduce the reversal law for conjugate transpose of product of matrices.
[B] State and prove associative law for product of matrices
Q: 4 [A] If S is a real skew-symmetric matrix then prove that $I-S$ is non-singular and the matrix $A=(I+S)(I-S)^{-1}$ is orthogonal
[B] Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and verify that it is satisfied by A and hence obtain A^{-1}

OR

Q: 4 [A] State and prove Cayley-Hamilton theorem
[B] Find the characteristic roots and any one of the characteristic vectors of: $\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$

Q: 5 [A] Obtain the rule for finding the particular integral of $f(D) y=e^{m x}$ where m is a constant
[B] Solve: $\left(D^{3}-5 D^{2}+7 D-3\right) y=\cosh x$
OR
Q: 5 [A] Solve: $\left(D^{2}+a^{2}\right) y=$ cosecax
[B] Solve $\left(D^{2}-5 D+6\right) y=4 e^{x}$ subject to the conditions that $y(0)=y^{\prime}(0)=1$. Hence find $y(16)$

