V.P. \& R.P.T.P. Science College,V.V.Nagar Internal Test: 2017-18

Subject: Mathematics US01CMTH02 Max. Marks : 25
Calculus and Differential Equation
Date: 11/10/2017
Timing: 01:30 pm - 02:30 pm

Q: 1. Answer the following by choosing correct answers from given choices.
[1] If $y=e^{3 x} \cos 2 x$ then $y_{n}=$
[A] $13^{\frac{n}{2}} e^{3 x} \cos \left(2 x+n \tan ^{-1} \frac{1}{3}\right)$
[B] $13^{\frac{n}{2}} e^{3 x} \cos \left(2 x+n \tan ^{-1} \frac{3}{2}\right)$
[C] $13^{\frac{n}{2}} e^{3 x} \cos \left(2 x+n \tan ^{-1} 3\right)$
[D] $13^{\frac{n}{2}} e^{3 x} \cos \left(2 x+n \tan ^{-1} \frac{2}{3}\right)$
[2] Intrinsic equation of a curve involves
[A] cartesian coordinates only
[B] polar coordinates only
[C] parameteric cordinates only
[D] none of these
[3] If a function y of x be implicitly described by $f(x, y)=c$, where c is a
constant then
[A] $\frac{d y}{d x}=-\frac{f_{y}}{f_{x}}$
[B] $\frac{d y}{d x}=\frac{f_{y}}{f_{x}}$
$[\mathrm{C}] \frac{d y}{d x}=\frac{f_{x}}{f_{y}}$
[D] $\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}$

Q: 2. Answer ANY TWO of the following.
[1] If $y=\log (2 x-1)$ then find y_{4}
[2] Define: (i) Intrinsic Equation (ii) Rectification
[3] Verify Euler's theorem for the function $z=\sin ^{-1} \frac{x^{2}}{y^{2}}$
Q: 3 [A] State and prove Leibniz's theorem
[B] If $y=e^{a x} \cos (b x+c)$, then prove that $y_{n}=r^{n} e^{a x} \cos (b x+c+n \varphi)$,
where $r=\sqrt{a^{2}+b^{2}}, \varphi=\tan ^{-1}\left(\frac{b}{a}\right)$

OR

Q: 3 [A] Let $y=\left(x^{2}-2\right)^{m}$. Find the value of m such that $\left(x^{2}-2\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0$.
[B] Find the angle between radius vector and tangent at a point on the curve $r^{m}=a^{m}(\cos m \theta+\sin m \theta)$

Q: 4 [A] Prove that if ρ is the radius of curvature at any point P of the parabola $y^{2}=4 a x$ and S is its focus then prove that $\rho^{2} \propto S P^{3}$
[B] For the curve $r=a(1-\cos \theta)$, prove that $\rho^{2} \propto r$. Also prove that if ρ_{1} and ρ_{2} are radii of the curvature at the ends of a chord through the pole, $\rho_{1}^{2}+\rho_{2}^{2}=\frac{16 a^{2}}{9}$

OR

Q: 4. Define Radius of curvature and let $r=f(\theta)$ be a polar form of a curve with a point P on it. Then prove that the radius of curvature at P is given by

$$
\begin{equation*}
\rho=\frac{\left(r^{2}+r_{1}^{2}\right)^{3 / 2}}{r^{2}+2 r_{1}^{2}-r r_{2}}, \tag{6}
\end{equation*}
$$

where $r_{1}=f^{\prime}(\theta)$ and $r_{2}=f^{\prime \prime}(\theta)$
Q: 5 [A] Let $z=f(x, y)$ be a real valued function defined on $E \subset R^{2}$. Suppose that f is a homogeneous function of degree n and that all the second order partial derivatives of f exist and are continuous. Then prove that

$$
x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=n(n-1) z .
$$

[B] If $H=f(2 x-3 y, 3 y-4 z, 4 z-2 x)$, then prove that

$$
\frac{1}{2} \frac{\partial H}{\partial x}+\frac{1}{3} \frac{\partial H}{\partial y}+\frac{1}{4} \frac{\partial H}{\partial z}=0
$$

OR

Q: 5 [A] Let a function y of x be implicitly described by $f(x, y)=c$. Then prove that (1) $\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}$
(2) $\frac{d^{2} y}{d x^{2}}=-\frac{f_{x x}\left(f_{y}\right)^{2}-2 f_{x y} f_{x} f_{y}+f_{y y}\left(f_{x}\right)^{2}}{\left(f_{y}\right)^{3}}$
[B] If A, B and C are angles of a $\triangle A B C$ such that $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=K$, a constant, then prove that

$$
\frac{d B}{d C}=\frac{\tan C-\tan A}{\tan A-\tan B}
$$

