V.P. \& R.P.T.P.Science College, V.V.Nagar
 Internal Test
 B.Sc.Semester - I
 Subject : Mathematics (US01CMTH01)
 (Analytic Geometry \& Complex Numbers)

Date: 10/10/2017
Day: Tuesday

Total Marks: 25
Time : 1:30 pm to $2: 30 \mathrm{pm}$

Que. 1 Attempt the following.

1. The curve $y=\frac{x^{2}-1}{x^{2}-9}$ has \qquad branches.
(a) 1
(b) 2
(c) 3
(d) 4

2. The curve $r=\frac{5}{3+\sin \theta}$ is an equation of \qquad
(a) Ellipse
(b) Hyperbola
(c) Line
(d) Parabola
3. (cise $)^{\frac{135}{105}}$ has \qquad distinct values.
(a) 105
(b) 5
(c) 7
(d) 35

Que. 2 Attempt the following. (Any Two)

1. Find polar equation of circle with centre at $\left(3,300^{\circ}\right)$ and radius is 2 .
2. Find parametric equation of $\sqrt{x}+\sqrt{y}=\sqrt{a}$.
3. If $2 \cos \theta=x+\frac{1}{x}$ then prove that $2 \cos r \theta=x^{r}+\frac{1}{x^{r}}$.

Que. 3 Trace the curve $y=\frac{2}{(x+1)(x-2)}$

OR

Que. 3 [C] If a curve given by $x=f(t), y=g(t)$ and both x and y get numerically large as t approaches some number say a. Then an oblique asymptote to the curve if it exist is given by $y=m x+c$, where $m=\lim _{t \rightarrow a}\left(\frac{d y}{d x}\right), \quad c=\lim _{t \rightarrow a}(y-m x)$
[D] Find equation of normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at point $(a \cos \theta, b \sin \theta)$.
Que. 4 [A] Prove that polar equation of circle with centre $\left(r_{1}, \theta_{1}\right)$ and radius a is given by $r^{2}+r_{1}^{2}-2 r r_{1} \cos \left(\theta-\theta_{1}\right)=a^{2}$. Also find equation of circle if centre is on polar axis and normal axis at distance a from the pole.
[B] Identify the curve $r=4+2 \cos \theta$ and its reciprocal curve.

OR

Que. $4[\mathrm{C}]$ In usual natation prove that $r=\frac{p e}{1 \pm e \cos \theta}$
[D] Find equation of line which touch the circle of radius 2 at the point $\left(2,135^{0}\right)$.
Que. $5[\mathrm{~A}]$ Find out the value of $\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{\frac{3}{4}}$.
[B] Expand $\cos ^{5} \theta$ in a series of cosine of multiples of θ.
OR
Que. 5 State and prove De-Moiver's Theorem.

