

No. of printed pages : 02

V. P. & R. P. T. P. SCIENCE COLLEGE, VALLABH VIDYANAGAR

INTERNAL TEST: OCTOBER-2017

F. Y. B. Sc. (Semester-I)

Date: 06/10/2017, Friday

Time: 1.30 P. M. To 2.30 P.M

Subject:- Inorganic Chemistry(US01CCHE02)

Note: (i) All questions are to be attempted.

Total Marks: 25

(ii) Figures to the right of each question indicate full marks.

Q: 1 Give the correct choice to the following multiple choice questions. [3]

- (i) If angular wave function is independent of angles θ and □ then, it represent _____ orbital.
 - (a) f (b) d (c) p (d) s
- (ii) How many lone pairs are present on oxygen atom of water molecule?
 (a) 0
 (b) 1
 (c) 2
 (d) 3

(iii) Each molecular orbital is defined by four quantum numbers represented as ______.

(a) n, l, λ , s (b) n, l, m, s (c) n, l, δ , s (d) none of this

Q: 2 Answers the following short questions(any two).

[4]

- (1)Define intervening electrons and electron probability function.
- (2) Which compounds violet the octet rule? How?
- (3)Give the order of energy of molecular orbitals for homonuclear diatomic molecules composed of lighter and heavier elements.
- Q:3[A]Write angular wave function $\Theta_{l,m} X \Phi_m$ for p orbitals and also deduce their shapes. Given: $\Theta_{1,0} = \sqrt{\frac{3}{2}} \cos \theta$, $\Theta_{1,\pm 1} = \sqrt{\frac{3}{4}} \sin \theta$, $\Phi_0 = \frac{1}{\sqrt{2\pi}}$ and $\Phi_{\pm 1} = \frac{1}{\sqrt{2\pi}} (\cos \pm i \sin \theta)$ [4]

[B] Calculate σ and Z _{eff} for 4s electron in:- Mn (Z=25)	[2]
OR	
Q:3[A]State de-Broglie's dual character of matter and derive de-Broglie's matter- wave equation.	[3]
[B]Calculate the de-Broglie's wave length of carbon dioxide molecule	
moving with a velocity of 1.2×10^6 cm/sec at 300 K temp.	
[Given: Atomic weight: C=12 g/mole, O=16 g/mole]	[3]
Q: 4[A] Define hybridization. Discuss the sp ² hybridization in BF ₃ molecule.	[3]
[B]Explain 'octate rule' in detail with suitable illustrations which obey	[3]
this rule.	
OR	
$Q: 4[A]$ Discuss the structure of NH_3 and gaseous PCl_5 molecules with on the	
basis of VSEPR-theory.	[3]
[B]The shape of molecule is distorted in presence of lone pair of	
electron. Explain giving suitable examples.	[3]
Q:5[A]Oxygen molecule is paramagnetic in nature. Explain by MOT.	[3]
[B] Distinguish between: Bonding molecular orbital and Anti bonding molecular orbital. OR	[3]
Q:5[A]State the rules for linear combination of atomic orbitals and	
how molecular orbitals are defined?	[3]
[B] Sketch and explain the molecular orbital diagram for H_2 and He_2^+ ion. Calculate the bond order for both this species.	[3]
BEST OF LUCK	

Page No-02

- 6

V.Nag