V.P. \& R.P.T.P. Science College,V.V.Nagar

Internal Test: 2016-17
Subject: Mathematics US02CMTH02 Max. Marks: 25
Matrix Algebra and Differential Equations
Date: 15/03/2017
Timing: 01:30 pm-02:30 pm

Q: 1. Answer the following by choasing correct answers from given choices.
[1] Two matrices can be added only if they have same
[A] orders
[B] number of columns
[C] number of rows
[D] elements
[2] If $|A+4 I|=0$ then one of the characteristic roots of A is
[A] 0
[B] -4
[C] 4
[D] 1
[3] $\frac{1}{D^{2}} e^{x}=$
[A] $\frac{1}{2!} e^{x}$
[B] e^{x}
[C] $2 e^{x}$
[D] $\frac{1}{e^{2 x}}$

Q: 2. Answer any TWO of the following.
[1] Define: (i) Conjugate Transpose (ii) Skew-symmetric Matrix
[2] Verify $A^{2}-8 A-I=O$, where $A=\left[\begin{array}{ll}7 & 2 \\ 4 & 1\end{array}\right]$.
[3] Find $\frac{1}{\left(D^{6}+D^{2}+1\right)} \sin 2 x$

Q: 3 [A] Prove that every square matrix can be expressed in one and only one way as a sum of a symmetric and a skew-symmetric matrix.

3
[B] For $A=\left[\begin{array}{ccc}0 & 2 m & n \\ l & m & -n \\ l & -m & n\end{array}\right]$, where $l=\frac{1}{\sqrt{2}}, m=\frac{1}{\sqrt{6}}$ and $n=\frac{1}{\sqrt{3}}$ show that $A A^{\prime}=I$

OR

Q: 3 [A] State and prove the reversal law for the transpose of product of matrices and deduce the reversal law for conjugate transpose of product of matrices.
[B] If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ then show that $A^{k}=\left[\begin{array}{cc}1+2 k & -4 k \\ k & 1-2 k\end{array}\right]$ where k is any positive integer

Q: 4 [A] State and prove Cayley-Hamilton theorem
[B] Find eigen values and any one of the eigen vectors of $\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$

OR

Q: 4 [A] Prove that every orthogonal matrix A can be expressed as $A=(I+S)(I-S)^{-1}$ by a suitable choice of real skew-symmetric matrix S provided that -1 is not a characteristic root of A
[B] Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and verify that it is satisfied by A and hence obtain A^{-1}

Q: 5 [A] Obtain the rule for finding the particular integral of $f(D) y=e^{m x}$ where m is a constant
[B] Solve : $\left(D^{2}+4\right) y=\sec 2 x$

OR

Q: 5 [A] In usual notations prove that $\frac{1}{D-\alpha} X=e^{a x} \int X e^{-a x} \cdot d x$
[B] Solve : $\frac{d^{4} y}{d x^{4}}-2 \frac{d^{3} y}{d x^{3}}+5 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+4 y=0$

