V.P.\& R.P.T.P.Science College, Vallabh Vidyanagar.
B.Sc. (Semester - I) Internal Test

US01CMTH01
(ANALYTIC GEOMETRY AND COMPLEX NUMBERS)
Date. 6/10/2016 ; Thursday 1.30 p.m. to 2.30 p.m. Maximum Marks: 25
Que. 1 Fill in the blanks.
(1) Parametric equation for $\sqrt{x}-\sqrt{y}=\sqrt{a}$ are \qquad
(a) $x=u \sec ^{4} \theta ; y=u \tan ^{4} \theta$
(b) $x=a \tan ^{4} \theta ; y=a \sec ^{4} \theta$
(c) $x=a \cos ^{3} \theta ; y=a \sin ^{3} \theta$
(d) $x=a \cos ^{4} \theta: y=a \sin ^{4} \theta$
(2) Reciprocal curve of $r=\frac{10}{3-2 \sin \theta}$ is \qquad

(a) cardioid
(b) Ellipse
(c) Surround the pole
(d) Hyperbola
(3) If $z=2+3 i$ then $z \cdot \bar{z}=$ \qquad
(a) 13
(b) $\sqrt{13}$
(c) -5
(d) 5

Que. 2 Answer the following (Any Two)
(1) Find equation of normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $(a \cos \theta, b \sin \theta)$.
(2) Find equation of tangent to the circle with radius 2 at the point $\left(2,135^{\circ}\right)$.
(3) Find the cube roots of unity .

Quc. 3 (a) If a curve is given by $x=f(t) ; y=g(t)$ and that both x and y get numerically large as t approaches some number, say a. Then prove that an oblique asymptote to the curve, if it exist, is given by $y=m x+c$, where $m=\lim _{t \rightarrow a} \frac{d y}{d x}$ and $c=\lim _{t \rightarrow a}(y-m x)$.
(b) Find tangent parallel to axes for $x=\cos ^{2} \theta$; $y=2 \sin \theta$.

OR
Que. 3 (a) Sketch the curve given by $y=\frac{x^{2}-1}{x^{2}-4}$.
(b) Find any one oblique asymptote for the curve given by $x=t+\frac{1}{t^{2}} ; y=t-\frac{1}{t^{2}}$.

Que. 4 (a) In usual notation prove that $r=\frac{p e}{1-e \cos \theta}$.
(b) If any straight line through the pole meets the circle $r^{2}-2 r d \cos (\theta-\alpha)+d^{2}-a^{2}=0$ at point P and Q . Then prove that $O P \cdot O Q=d^{2}-a^{2}$.

OR

Que. 4 (a) Prove that polar equation of circle with centre (r_{1}, θ_{1}) and radius a is given by $r^{2}+r_{1}^{2}-2 r r_{1} \cos \left(\theta-\theta_{1}\right)=a^{2}$. Also find equation of circle if centre is on polar axis at distance a from the pole.
(b) Find the perpendicular distance of line $2 \sqrt{2}=r(\sqrt{3} \cos \theta+\sin \theta)$ from the pole

Que. 5 State and prove De-Moivre's theorem .

OR

Que. 5 (a) Prove that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cos ^{n}(\theta / 2) \cos (n \theta / 2)$.
(b) Prove that $\cos 6 \theta=32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1$.

