VALLABH VIDYANAGAR

INTERNAL TEST-2016

Date:03-10-2016
B.Sc. (Semester-I)

Day : Monday
Time: 1.30 p.m. to 2.30 p.m.
Total Marks: 25
Subject: INORGANIC CHEMISTRY (US01CCHE02)
Note: (i) All questions are to be attempted.
(ii) Figures to the right indicate marks.

Q: 1 Answer the following multiple choice questions:
(i) Who has given the Uncertainty principle ?
(a) de-Broglie
(b) Heisenberg
(c) Einstein
(d) Plank
(ii) What is the geometrical arrangement of $s p^{2}$ hybrid orbital?
(a) linear
(b) tetraliedral
(c) trigonal planar
(d) trigonal bipyramid
(iii) What is the bond order of $\mathrm{H}_{2}{ }^{+}$molecule ?
(a) 0.5
(b) 2
(c) 1
(d) 1.5

Q: 2 Answer the following (ANY TWO):
(i) Define election probability function and effective nuclear charge.
(ii) Why bond angle is $107^{\circ} 48^{\prime}$ in an NH_{3} molecule ?
(iii) Why He_{2} molecule does not exist?

Q: 3 (a) Derive de-Broglie's wave equation.
(b) Calculate the screening constant and effective nuclear charge for the last electron in Cl -atom $(Z=17)$.

OR

Q:3 (a) Discuss the factors affecting the magnitude of σ and $Z_{e l l}$ and their variation in periodic table.
(b) A cricket ball weighing 100 gms is to be located within $0.1 \AA$. What is the uncertainty in its velocity? Comment on your result.
Q: 4 (a) ClF_{3} has distorted trigonal bipyramidal shape while $I_{3}{ }^{-}$ion has linear shape. Explain [03] by VSEPR theory.
(b) Define hybridization. Discuss the $s p$ hybridization in BeF_{2} molecule.

OR

Q: 4 (a) Using VSEPR theory, predict the geometry of SF_{4} and $\mathrm{H}_{2} \mathrm{O}$ molecule.
(b) Discuss the hybridization of atomic orbitals of carbon atom in CH_{4} molecule.

Q: 5 (a) Describe LCAO method to obtain wave function of molecular orbital.
(b) Describe molecular treatment of F_{2} - molecule.

OR
Q:5 (a) Give the essential requirement for orbital to undergo linear combination of atomic
orbitals. How molecular orbitals are defined?
(b) Expain s-p combination of orbitals.

