V.P.\& R.P.T.P.Science College.Vallabh Vidyanagar.
 Internal Test
 B.Sc. Semester II
 US02CMTH01 (Analytic Solid Geometry)
 Saturday, $15^{\text {th }}$ March 2014
 $11.00 \mathrm{a} . \mathrm{m}$. to $12.00 \mathrm{p} . \mathrm{m}$.

Maximum Marks: 30

Que. 1 Answer the following (Any three)
(1) Prove that a sphere with centre (α, β, γ) and radius a is given by $(x-\alpha)^{2}+(y-\beta)^{2}+(z-\gamma)^{2}=a^{2}$.
(2) Find the equations of the tangent plane to the sphere $x^{2}+y^{2}+z^{2}+2 x+4 y+6 z-24=0$ at $(1,1,2)$.

(3) Show that $A x^{2}+B y^{2}+C z^{2}=D$ represents an elliptic hyperboloid of one sheet if one coefficient is negative and $D>0$.
(4) Plot the spherical point $(2,7 \pi / 4, \pi / 6)$.
(5) Find the points of intersection of the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ and the cone $f(x, y, z) \equiv a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y+2 u x+2 v y+2 w z=0$.
(6) Find the equation of cone with vertex at the origin and which passes through the curve $a x^{2}+b y^{2}=2 z ; l x+m y+n z=p$.

Que. 2 (a) Find the equation of the spheres which pass through the given circle $x^{2}+y^{2}+z^{2}-4 x-y+3 z+12=0 ; 2 x+3 y-7 z=10$ and touch the plane $x-2 y+2 z=1$.
(b) Find equation of sphere with centre at $(2,-1,0)$ and passing through $(1,-1,2)$.

OR

Que. 2 (a) Let two spheres be given by
$S_{1} \equiv x^{2}+y^{2}+z^{2}+2 u_{1} x+2 v_{1} y+2 u_{1} z+d_{1}=0$;
$S_{2} \equiv x^{2}+y^{2}+z^{2}+2 u_{2} x+2 v_{2} y+2 w_{2} z+d_{2}=0$.
Then prove that $S_{1}+\lambda S_{2}=0$, where $\lambda \in \mathbb{R}, \lambda \neq-1$, represents a family of spheres passing through the intersection of the spheres $S_{1}=0$ and $S_{2}=0$.
(b) Show that the following pair of spheres touch each other

$$
x^{2}+y^{2}+z^{2}=64 ; x^{2}+y^{2}+z^{2}-12 x+4 y-6 z+48=0 .
$$

Que. 3 (a) Identify, describe and sketch the surface $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=c z ;(c>0)$.
(b) Find Jacobian of Cartesian co-ordinates with respect to Cylindrical co-ordinates.

Que. 3 (a) By a proper choice of axes, prove that the Cartesian coordinates (x, y, z) of a point can be expressed in terms of spherical polar coordinates (ρ, θ, ϕ) as
$x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$.
(b) Identify and describe the surface $\frac{x^{2}}{9}-\frac{y^{2}}{16}-\frac{z^{2}}{9}=1$.

Que. 4 (a) Prove that the cone $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0$ admits of sets of three mutually perpendicular generators iff $a+b+c=0$.
(b) Find the equation of cone whose vertex is (α, β, γ) and base is $a x^{2}+b y^{2}=1 ; z=0$.

OR

Que. 4 (a) If the section of a cone whose vertex is P and guiding curve is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ; z=0$ by the plane $\mathrm{x}=0$ is a rectangular hyperbola . Show that the locus of P is $\frac{x^{2}}{a^{2}}+\frac{y^{2}+z^{2}}{b^{2}}=1$.
(b) If $F(x, y, z) \equiv a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y+2 u x+2 v y+2 w z+d=0$ represents a cone, then the co-ordinates of its vertex satisfy the equation $F_{x}=F_{y}=F_{z}=F_{t}=0$ where t is used to make $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ homogeneous and put t equal to unity after differentiation.

