
 SEM6(BCA) Study Material US06DBCA21 : Python Programming

Unit : 1 Introduction to Python

 Python Overview and History,

 Features of Python,

 Difference Between C, JAVA & Python,

 Applications of Python,

 Programming Structure of Python,

 Python Environment Setup,

 Basic Syntax of python with Data Types,

 Python variables,

 Casting,

 Operators,

 Comments,

 User Input,

 Decision making and Branching.

 Introduction to Python and History :
 Python is a widely used general-purpose, high-level programming language.

It was initially designed by Guido van Rossum in 1991 and developed by Python Software

Foundation. It was mainly developed for emphasis on code readability, and its syntax allows

programmers to express concepts in fewer lines of code. There is a fact behind choosing the

name Python. Guido van Rossum was reading the script of a popular BBC comedy series

"Monty Python's Flying Circus". Van Rossum wanted to select a name which unique,

short, and little-bit mysterious. So he decided to select naming Python after the "Monty

Python's Flying Circus" for their newly created programming language.

 Python is derived from many other languages, including ABC, Modula-3, C, C++,

Algol-68, SmallTalk, and Unix shell and other scripting languages.

 Python is copyrighted. Like Perl, Python source code is now available under the

GNU General Public License (GPL).

 Python is now maintained by a core development team at the institute, although

Guido van Rossum still holds a vital role in directing its progress.

 Python 1.0 was released in November1994. In 2000, Python 2.0 was released. Python

2.7.11 is the latest edition of Python 2.

 Meanwhile, Python 3.0 was released in 2008. Python 3 is not backward compatible

with Python 2. The emphasis in Python 3 had been on the removal of duplicate

programming constructs and modules so that "There should be one --and preferably

only one --obvious way to do it." Python 3.5.1 is the latest version of Python 3.

Basic elements of python:

1. Srcipt

2. Shell

3. Statement

1. Script: it is a sequence of instructions or commands. Python programs are referred as

scripts.

2. Shell: Python commands are executed by python interpreter which is known as Shell.

There is always a new shell get created whenever the execution of program starts.

3. Statements: statements are commands that instruct the interpreter to perform the

action.

 Python Features
 Easy-to-learn: Python has few keywords, simple structure, and a clearly defined

syntax. This allows a student to pick up the language quickly.

 Easy-to-read: Python code is more clearly defined and visible to the eyes.

 Easy-to-maintain: Python’s source code is fairly easy-to-maintain.

 A broad standard library: Python’s bulk of the library is very portable and cross-

platform compatible on UNIX, Windows, and Macintosh.

 Interactive Mode: Python has support for an interactive mode, which allows

interactive testing and debugging of snippets of code.

 Portable: Python can run on a wide variety of hardware platforms and has the same

interface on all platforms.

 Extendable: You can add low-level modules to the Python interpreter. These modules

enable programmers to add to or customize their tools to be more efficient.

 Databases: Python provides interfaces to all major commercial databases.

 GUI Programming: Python supports GUI applications that can be created and ported

to many system calls, libraries and windows systems, such as Windows MFC,

Macintosh, and the X Window system of Unix.

 Scalable: Python provides a better structure and support for large programs than shell

scripting. Apart from the above-mentioned features, Python has a big list of good

features. A few are listed below-

 It supports functional and structured programming methods as well as OOP.

 It can be used as a scripting language or can be compiled to byte-code for building

large applications.

 It provides very high-level dynamic data types and supports dynamic type checking.

 It supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

 Difference between C, JAVA & Python
 C JAVA PYTHON

Compiled Programming

language

Compiled and Interpreted

Programming Language

Interpreted Programming

Language

Does not support Operator

Overloading

Does not support Operator

Overloading
Supports Operator overloading

Inheritance Not Possible

Provide partial multiple

inheritance using

interfaces

Provide both single and multiple

inheritance

Platform dependent Platform Independent Platform Independent

Does Not support threads
Has in build

multithreading support
Supports multithreading

Has limited number of

library support

Has library support for

many concepts like UI

Has a huge set of libraries that

make it fit for AI, data science,

etc.

Code length is a bit lesser,

1.5 times less then java.
Java has quite huge code.

Smaller code length, 3-4 times

less than java.

Modular Programming
Every bit of code is inside

a class.

Functions and variables can be

declared and used outside the

class also.

C programming is a fast

compile programming

language.

Java Program compiler a

bit slower than C++

Due to the use of interpreter

execution is slower.

Strictly uses syntax norms

like ; and {}.

Strictly uses syntax norms

like punctuations , ; .
Use of ; is not compulsory.

 Applications of Python

 1. Web Development

2. Game Development

3. Scientific and Numeric Applications

4. Artificial Intelligence and Machine Learning

5. Desktop GUI

6. Software Development

7. Enterprise-level/Business Applications

8. Education programs and training courses

9. Language Development

10. Operating Systems

11. Web Scraping Applications

12. Image Processing and Graphic Design Applications

 Programming Structure of Python

Programming Structure of Python
In General Python Program Consists of so many text files, which contains python

statements. Program is designed as single main, high file with one or more supplement

files In python high level file has Important path of control of your Program the file, you can

start your application. The library tools are also know as Module files. These tools are

implemented for making collection of top-level files. High level files use tools which are

defined in Module files. And module files will Implement files which are Defined in other

Modules. Coming to our point in python a file takes a module to get access to the tools it

defines. And the tools made by a module type. The final thing is we take Modules and access

attributes to their tools. In like manner this shows Programming structure of Python

Attributes and Imports:

The structure Python Program consists of three files such as: a.py, b.py and c.py. The file

model a.py is chosen for high level file . it is known as a simple text file of statements. And

it can be executed from bottom to top when it is launched. Files b.py and c.py are modules.

They are calculated as better text files of statements as well. But they are generally not

started Directly. Identically this attributes define Programming structure of Python.

Functions:

For example b.py defines a function called spam. For external use, b.py has python def

statement to start the function. later operated by passing one or more values like the below.

Def spam(text): print text, ‘spam’

If a.py wants to use spam, it has python statements like below

Import b b.spam (‘gumby’)

Statements:

Python import statement gives file a.py access to file b.py. it shows that “load fileb.py” and

gives access to all its attributes by name b” import statements will execute and implement

other file for at run-time. In python cross file module is not updated until import statements

are executed.

The next part is statements will call the function spam. module b used by object attribute

notation. B.spam means get value of name spam within object b. And we can implement a

string in parenthesis if these files run by a.py.

In regular if we see object. Attribute in total python scripts. Many objects have attributes

traced by “python operators".

The process of Importing considered as general in total python. Any sort of file can get tools

from any file. Getting of chains can be go as deep as you can . By this Instance you will get

it notified module a can import b and b can Import c, and c again Imports b. correspondingly

this statements include Programming structure of Python

Modules:

If we take this as a part, python serves as biggest company structure. Modules are having top

end of code. By coding components in module files.used in any program files.If we take an

example function b.spam is regular purpose tool. We can again implement that in a different

program. This is simply known as b.py from any other program files.

Standard library files:

Python has large collection of modules known as standard library. it contains 200 modules at

last count. It is platform independent common programming works. Such as GUI Design,

Internet and network scripting. Text design matching, Operating system

Interfaces. So, Comparatively all the Above will explain Programming structure of Python.

 Python Environment Setup

 Windows Installation

Here are the steps to install Python on Windows machine.

 Open a Web browser and go to https://www.python.org/downloads/.

 Follow the link for the Windows installer python-XYZ.msi file where XYZ is the

version you need to install.

 To use this installer python-XYZ.msi, the Windows system must support Microsoft

Installer 2.0. Save the installer file to your local machine and then run it to find out if

your machine supports MSI.

 Run the downloaded file. This brings up the Python install wizard, which is really

easy to use. Just accept the default settings, wait until the install is finished, and you

are done.

Setting path at Windows

To add the Python directory to the path for a particular session in Windows −

At the command prompt − type path %path%;C:\Python and press Enter.

Note − C:\Python is the path of the Python directory

Python Environment Variables

Here are important environment variables, which can be recognized by Python −

https://onlineitguru.com/tutorial/python-operators
https://www.python.org/downloads/

Sr.No. Variable & Description

1

PYTHONPATH

It has a role similar to PATH. This variable tells the Python interpreter where to

locate the module files imported into a program. It should include the Python source

library directory and the directories containing Python source code. PYTHONPATH

is sometimes preset by the Python installer.

2

PYTHONSTARTUP

It contains the path of an initialization file containing Python source code. It is

executed every time you start the interpreter. It is named as .pythonrc.py in Unix and

it contains commands that load utilities or modify PYTHONPATH.

3
PYTHONCASEOK
It is used in Windows to instruct Python to find the first case-insensitive match in an

import statement. Set this variable to any value to activate it.

4

PYTHONHOME
It is an alternative module search path. It is usually embedded in the

PYTHONSTARTUP or PYTHONPATH directories to make switching module

libraries easy.

 Basic Syntax of python with Data Types

 The Python language has many similarities to Perl, C, and Java. However, there are some

definite differences between the languages.

First Python Program

Let us execute programs in different modes of programming.

Type the following text at the Python prompt and press the Enter −

>>> print "Hello, Python!"

If you are running new version of Python, then you would need to use print statement with

parenthesis as in print ("Hello, Python!");. However in Python version 2.4.3, this produces

the following result −

Hello, Python!

Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the script and continues

until the script is finished. When the script is finished, the interpreter is no longer active.

Let us write a simple Python program in a script. Python files have extension .py. Type the

following source code in a test.py file −

print "Hello, Python!"

We assume that you have Python interpreter set in PATH variable. Now, try to run this

program as follows −

$ python test.py

This produces the following result −

Hello, Python!

 Data Types represent the type of data present inside a variable.

In Python we are not required to specify the type explicitly. Based on value provided, the

type will be assigned automatically. Hence Python is Dynamically Typed Language.

Python contains the following inbuilt data types :

1. int, 2. float, 3.complex, 4.bool, 5.str, 6.bytes, 7.bytearray, 8.range, 9.list, 10.tuple, 11.set

12.frozenset, 13.dict, 14.None

 Python variables
 Variables in Python are Identifiers.

A name in Python program is called identifier.

It can be class name or function name or module name or variable name.

a = 10

Rules to define identifiers in Python:

1. The only allowed characters in Python are

 alphabet symbols(either lower case or upper case)

 digits(0 to 9)

 underscore symbol(_)

By mistake if we are using any other symbol like $ then we will get syntax error.

 cash = 10 √

 ca$h =20 Wrong

2. Identifier should not starts with digit

 123total Wrong

 total123 √

3. Identifiers are case sensitive. Of course Python language is case sensitive language.

 total=10

 TOTAL=999

 print(total) #10

Identifier:
 Alphabet Symbols (Either Upper case OR Lower case)

 If Identifier is start with Underscore (_) then it indicates it is private.

 Identifier should not start with Digits.

 Identifiers are case sensitive.

 We cannot use reserved words as identifiers

Eg: def=10
 There is no length limit for Python identifiers. But not recommended to use too

lengthy identifiers.

 Dollor ($) Symbol is not allowed in Python.

Q. Which of the following are valid Python identifiers?
 123total
 total123 √

 java2share √
 ca$h
 _abc_abc_ √
 def
 if

Note:
 If identifier starts with _ symbol then it indicates that it is private

 If identifier starts with __ (two under score symbols) indicating that strongly private

identifier.

 3. If the identifier starts and ends with two underscore symbols then the identifier is

language defined special name, which is also known as magic methods.

 Casting

We can convert one type value to another type. This conversion is called Typecasting or

Type coersion.

The following are various inbuilt functions for type casting.

1. int()

2. float()

3. complex()

4. bool()

5. str()

1.int():
We can use this function to convert values from other types to int

Eg:

1) >>> int(123.987)

2) 123

3) >>> int(10+5j)

4) TypeError: can't convert complex to int

5) >>> int(True)

6) 1

7) >>> int(False)

8) 0

9) >>> int("10")

10) 10

11) >>> int("10.5")

12) ValueError: invalid literal for int() with base 10: '10.5'

13) >>> int("ten")

14) ValueError: invalid literal for int() with base 10: 'ten'

15) >>> int("0B1111")

16) ValueError: invalid literal for int() with base 10: '0B1111'

Note:

1. We can convert from any type to int except complex type.

2. If we want to convert str type to int type, compulsary str should contain only integral

value and should be specified in base-10

2. float():
We can use float() function to convert other type values to float type.

1) >>> float(10)

2) 10.0

3) >>> float(10+5j)

4) TypeError: can't convert complex to float

5) >>> float(True)

6) 1.0

7) >>> float(False)

8) 0.0

9) >>> float("10")

10) 10.0

11) >>> float("10.5")

12) 10.5

13) >>> float("ten")

14) ValueError: could not convert string to float: 'ten'

15) >>> float("0B1111")

16) ValueError: could not convert string to float: '0B1111'

Note:

1. We can convert any type value to float type except complex type.

2. Whenever we are trying to convert str type to float type compulsary str should be

either integral or floating point literal and should be specified only in base-10.

3.complex():
We can use complex() function to convert other types to complex type.

Form-1: complex(x)

We can use this function to convert x into complex number with real part x and imaginary

part 0.

Eg:

1) complex(10)==>10+0j

2) complex(10.5)===>10.5+0j

3) complex(True)==>1+0j

4) complex(False)==>0j

5) complex("10")==>10+0j

6) complex("10.5")==>10.5+0j

7) complex("ten")

8) ValueError: complex() arg is a malformed string

Form-2: complex(x,y)

We can use this method to convert x and y into complex number such that x will be real part

and y will be imaginary part.

Eg: complex(10,-2)==>10-2j

complex(True,False)==>1+0j

4. bool():
We can use this function to convert other type values to bool type.

Eg:

1) bool(0)==>False

2) bool(1)==>True

3) bool(10)===>True

4) bool(10.5)===>True

5) bool(0.178)==>True

6) bool(0.0)==>False

7) bool(10-2j)==>True

8) bool(0+1.5j)==>True

9) bool(0+0j)==>False

10) bool("True")==>True

11) bool("False")==>True

12) bool("")==>False

5. str():
We can use this method to convert other type values to str type

Eg:

1) >>> str(10)

2) '10'

3) >>> str(10.5)

4) '10.5'

5) >>> str(10+5j)

6) '(10+5j)'

7) >>> str(True)

8) 'True'

 Operators

 Operator is a symbol that performs certain operations.

Python provides the following set of operators

1. Arithmetic Operators

2. Relational Operators or Comparison Operators

3. Logical operators

4. Bitwise oeprators

5. Assignment operators

6. Special operators

1. Arithmetic Operators:

+ ==>Addition

- ==>Subtraction

* ==>Multiplication

/ ==>Division operator

% ===>Modulo operator

// ==>Floor Division operator

** ==>Exponent operator or power operator

Eg: test.py:

1) a=10

2) b=2

3) print('a+b=',a+b)

4) print('a-b=',a-b)

5) print('a*b=',a*b)

6) print('a/b=',a/b)

7) print('a//b=',a//b)

8) print('a%b=',a%b)

9) print('a**b=',a**b)

Output:

1) Python test.py or py test.py

2) a+b= 12

3) a-b= 8

4) a*b= 20

5) a/b= 5.0

6) a//b= 5

7) a%b= 0

8) a**b= 100

Eg:

1) a = 10.5

2) b=2

1) 3)

3) a+b= 12.5

4) a-b= 8.5

5) a*b= 21.0

6) a/b= 5.25

7) a//b= 5.0

8) a%b= 0.5

9) a**b= 110.25

Eg:

10/2==>5.0

10//2==>5

10.0/2===>5.0

10.0//2===>5.0

Note: / operator always performs floating point arithmetic. Hence it will always returns float

value.

But Floor division (//) can perform both floating point and integral arithmetic. If

arguments are int type then result is int type. If atleast one argument is float type then

result is float type.

Note:

We can use +,* operators for str type also.

If we want to use + operator for str type then compulsory both arguments should be str

type only otherwise we will get error.

1. >>> "Adhya"+10

2. TypeError: must be str, not int

3. >>> "Adhya"+"10"

4. 'Adhya10'

If we use * operator for str type then compulsory one argument should be int and other

argument should be str type.

2*"Adhya"

"Adhya"*2

2.5*"Adhya" ==>TypeError: can't multiply sequence by non-int of type 'float'

"Adhya"*"Adhya"==>TypeError: can't multiply sequence by non-int of type 'str'

+====>String concatenation operator

* ===>String multiplication operator

Note: For any number x,

x/0 and x%0 always raises "ZeroDivisionError"

10/0

10.0/0

.....

2. Relational Operators:

>,>=,<,<=

Eg 1:

1) a=10

2) b=20

3) print("a > b is ",a>b)

4) print("a >= b is ",a>=b)

5) print("a < b is ",a<b)

6) print("a <= b is ",a<=b)

1. 7)

7) a > b is False

8) a >= b is False

9) a < b is True

10) a <= b is True

We can apply relational operators for str types also

Eg 2:

1) a="Adhya"

2) b="Adhya"

3) print("a > b is ",a>b)

4) print("a >= b is ",a>=b)

5) print("a < b is ",a<b)

6) print("a <= b is ",a<=b)

7) 7)

8) a > b is False

9) a >= b is True

10) a < b is False

11) a <= b is True

Eg:

1) print(True>True) False

2) print(True>=True) True

3) print(10 >True) True

4) print(False > True) False

1) 5)

5) print(10>'Adhya')

6) TypeError: '>' not supported between instances of 'int' and 'str'

Eg:

1) a=10

2) b=20

3) if(a>b):

4) print("a is greater than b")

5) else:

6) print("a is not greater than b")

Outputa is not greater than b

Note: Chaining of relational operators is possible. In the chaining, if all comparisons

returns True then only result is True. If atleast one comparison returns False then the

result is False

Eg:

1) 10<20 ==>True

2) 10<20<30 ==>True

3) 10<20<30<40 ==>True

4) 10<20<30<40>50 ==>False

3. Equality operators:

== , !=

We can apply these operators for any type even for incompatible types also

1) >>> 10==20

2) False

3) >>> 10!= 20

4) True

5) >>> 10==True

6) False

7) >>> False==False

8) True

9) >>> "Adhya"=="Adhya"

10) True

11) >>> 10=="Adhya"

12) False

Note: Chaining concept is applicable for equality operators. If at least one comparison

returns False then the result is False. otherwise the result is True.

Eg:

1) >>> 10==20==30==40

2) False

3) >>> 10==10==10==10

4) True

4. Logical Operators:

and, or ,not

We can apply for all types.

For Boolean types behaviour:

and ==>If both arguments are True then only result is True

or ====>If at least one argument is True then result is True

not ==>complement

True and False ==>False

True or False ===>True

not False ==>True

For non-Boolean types behaviour:

0 means False

non-zero means True

empty string is always treated as False

x and y:

==>if x is evaluates to false return x otherwise return y

Eg:

10 and 20

0 and 20

If first argument is zero then result is zero otherwise result is y

x or y:

If x evaluates to True then result is x otherwise result is y

10 or 20 ==> 10

0 or 20 ==> 20

not x:

If x is evaluates to False then result is True otherwise False

not 10 ==>False

not 0 ==>True

Eg:

1) "Adhya" and " AdhyaPatel" ==>AdhyaPatel

2) "" and "Adhya" ==>""

3) "Adhya" and "" ==>""

4) "" or "Adhya" ==>"Adhya"

5) "Adhya" or ""==>"Adhya"

6) not ""==>True

7) not "Adhya" ==>False

5. Bitwise Operators:

We can apply these operators bitwise.

These operators are applicable only for int and boolean types.

By mistake if we are trying to apply for any other type then we will get Error.

&,|,^,~,<<,>>

print(4&5) ==>valid

print(10.5 & 5.6) ==>

TypeError: unsupported operand type(s) for &: 'float' and 'float'

print(True & True) ==>valid

& ==> If both bits are 1 then only result is 1 otherwise result is 0

| ==> If atleast one bit is 1 then result is 1 otherwise result is 0

^ ==>If bits are different then only result is 1 otherwise result is 0

~ ==>bitwise complement operator

1==>0 & 0==>1

<< ==>Bitwise Left shift

>> ==>Bitwise Right Shift

print(4&5) ==>4

print(4|5) ==>5

print(4^5) ==>1

bitwise complement operator(~):

We have to apply complement for total bits.

Eg: print(~5) ==>-6

Note:

The most significant bit acts as sign bit. 0 value represents +ve number where as 1

Represents -ve value.

positive numbers will be represented directly in the memory where as -ve numbers will be

Represented indirectly in 2's complement form.

Shift Operators:

<< Left shift operator

After shifting the empty cells we have to fill with zero

print(10<<2)==>40

>> Right Shift operator

After shifting the empty cells we have to fill with sign bit.(0 for +ve and 1 for -ve)

print(10>>2) ==>2

We can apply bitwise operators for boolean types also

print(True & False) ==>False

print(True | False) ===>True

print(True ^ False) ==>True

print(~True) ==>-2

print(True<<2) ==>4

print(True>>2) ==>0

Assignment Operators:

We can use assignment operator to assign value to the variable.

Eg:

x=10

We can combine assignment operator with some other operator to form compound

Assignment operator.

Eg: x+=10 ====> x = x+10

The following is the list of all possible compound assignment operators in Python

+=

-=

*=

/=

%=

//=

**=

&=

|=

^=

>>=

<<=

Eg:

1) x=10

2) x+=20

3) print(x) ==>30

Eg:

1) x=10

2) x&=5

3) print(x) ==>0

6. Ternary Operator:

Syntax:

x = firstValue if condition else secondValue

If condition is True then firstValue will be considered else secondValue will be considered.

Eg 1:

1) a,b=10,20

2) x=30 if a<b else 40

3) print(x) #30

Eg 2: Read two numbers from the keyboard and print minimum value

1) a=int(input("Enter First Number:"))

2) b=int(input("Enter Second Number:"))

3) min=a if a<b else b

4) print("Minimum Value:",min)

Output:

Enter First Number:10

Enter Second Number:30

Minimum Value: 10

Note: Nesting of ternary operator is possible.

Q. Program for minimum of 3 numbers

1) a=int(input("Enter First Number:"))

2) b=int(input("Enter Second Number:"))

3) c=int(input("Enter Third Number:"))

4) min=a if a<b and a<c else b if b<c else c

5) print("Minimum Value:",min)

Q. Program for maximum of 3 numbers

1) a=int(input("Enter First Number:"))

2) b=int(input("Enter Second Number:"))

3) c=int(input("Enter Third Number:"))

4) max=a if a>b and a>c else b if b>c else c

5) print("Maximum Value:",max)

Eg:

1) a=int(input("Enter First Number:"))

2) b=int(input("Enter Second Number:"))

3) print("Both numbers are equal" if a==b else "First Number is Less than Second

Number" if a<b else "First Number Greater than Second Number")

Output:

D:\python_classes>py test.py

Enter First Number:10

Enter Second Number:10

Both numbers are equal

D:\python_classes>py test.py

Enter First Number:10

Enter Second Number:20

First Number is Less than Second Number

D:\python_classes>py test.py

Enter First Number:20

Enter Second Number:10

First Number Greater than Second Number

7. Special operators:

Python defines the following 2 special operators

1. Identity Operators

2. Membership operators

1. Identity Operators

We can use identity operators for address comparison.

2 identity operators are available

1. is

2. is not r1 is r2 returns True if both r1 and r2 are pointing to the same object r1 is not

r2 returns True if both r1 and r2 are not pointing to the same object

Eg:

1) a=10

2) b=10

3) print(a is b) True

4) x=True

5) y=True

6) print(x is y) True

Eg:

1) a="Adhya"

2) b="Adhya"

3) print(id(a))

4) print(id(b))

5) print(a is b)

Eg:

1) list1=["one","two","three"]

2) list2=["one","two","three"]

3) print(id(list1))

4) print(id(list2))

5) print(list1 is list2) False

6) print(list1 is not list2) True

7) print(list1 == list2) True

Note:

We can use is operator for address comparison where as == operator for content

comparison.

2. Membership operators:

We can use Membership operators to check whether the given object present in the

given collection.(It may be String,List,Set,Tuple or Dict)

in Returns True if the given object present in the specified Collection
not in Retruns True if the given object not present in the specified Collection
Eg:

1) x="hello learning Python is very easy!!!"

2) print('h' in x) True

3) print('d' in x) False

4) print('d' not in x) True

5) print('Python' in x) True

Eg:
1) list1=["sunny","bunny","chinny","pinny"]

2) print("sunny" in list1) True

3) print("tunny" in list1) False

4) print("tunny" not in list1) True

Operator Precedence:

If multiple operators present then which operator will be evaluated first is decided by

operator precedence.

Eg:

print(3+10*2) 23

print((3+10)*2) 26

The following list describes operator precedence in Python

() Parenthesis
** exponential operator

~,- Bitwise complement operator,unary minus operator
*,/,%,// multiplication,division,modulo,floor division
+,- addition,subtraction

<<,>> Left and Right Shift

& bitwise And

^ Bitwise X-OR
| Bitwise OR
>,>=,<,<=, ==, != ==>Relational or Comparison operators

=,+=,-=,*=... ==>Assignment operators

is , is not Identity Operators

in , not in Membership operators
not Logical not

and Logical and

or Logical or

Eg:
1) a=30

2) b=20

3) c=10
4) d=5

5) print((a+b)*c/d) 100.0

6) print((a+b)*(c/d)) 100.0
7) print(a+(b*c)/d) 70.0

8) 3/2*4+3+(10/5)**3-2

9) 3/2*4+3+2.0**3-2

10) 3/2*4+3+8.0-2
11) 1.5*4+3+8.0-2

12) 6.0+3+8.0-2

13) 15.0

 Comments

What are Comments?

A comment, in general, is an expression of one’s ideas. In programming, comments are

programmer-coherent statements, that describe what a block of code means. They get very

useful when you are writing large codes. It’s practically inhuman to remember the names of

every variable when you have a hundred-page program or so. Therefore, making use of

comments will make it very easy for you, or someone else to read as well as modify the

code.

Comments are very important, but you will need to know how to make use of them which is

exactly what will be discussed in the following topic.

How to make use of Comments?

Comments can be included anywhere which means inline as well. The best practice is to

write relevant comments as and how you proceed with your code.

 Here are some key points that will help you while commenting your code:

 Comments need to be short and relevant

 They are to be specific to the block of code they are included with

 Make sure to use decent language, as using foul language is unethical

 Don’t comment self-explanatory lines

Now that you know the importance of comments, let’s move ahead and see how to write

Comments in Python.

How to write Comments in Python?

Comments in Python start with a # character. However, alternatively at times, commenting is

done using docstrings(strings enclosed within triple quotes), which are described further in

this article.

Example:

1

2

#Comments in Python start like this

print("Comments in Python start with a #")

Output: Comments in Python start with a #

As you can see in the above output, the print statement is executed whereas the comment

statement is not present in the output.

 If you have more than one comment line, all of them need to be prefixed by a #.

Example:

1

2

3

#Comments in Python

#start with this character

print("Comments in

Python")

Output: Comments in Python

The above output shows that all lines prefixed with a # character are not returned in the

output.

Moving forward let’s see how comments are interpreted and why they never appear in the

output.

How does Python interpret comments?

When the interpreter encounters a # symbol anywhere, (except inside a string because a #

within a string just means #), it omits everything that is present after it until the end of that

line. The # tag actually tells the interpreter to stop reading anything present after it.

Types of Comments

Comments can either be

 Single-line or

 Multi-line

Single-line Comments:

They can appear either in an individual line or inline with some other code.

Example:

1

2

3

4

5

#multiplying two variables (this line starts with a #, hence will be ignored

till line ends)

a=1

b=2

c=a*b

print(c) # printing result (inline comment, whatever is present after # will

be ignored)

Output: 2

Multi-line Comments:

Multi-line comments appear in more than one line. All the lines to be commented are to be

prefixed by a #. If you don’t do so, you will encounter an error.

Example:

1

2

3

4

5

6

#adding 2 variables

#pinting the result in a new variable

a=2

b=3

c=a+b

print(c)

Output: 5

The above output shows that the first two program lines being prefixed with a # character

have been omitted and the rest of the program is executed returning its respective output.

You can also a very good shortcut method to comment multiple lines. All you need to do

https://www.edureka.co/blog/content/ver.1556012641/uploads/2019/04/Types-of-Comments-Comments-in-Python-Edureka-2.png

is hold the ctrl key and left click in every place wherever you want to include a # character

and type a # just once. This will comment all the lines where you introduced your cursor.

If you want to remove # from multiple lines you can do the same thing and use the

backspace key just once and all the selected # characters will be removed.

However, these multi-line comments look very unpleasant when you’re commenting

documentation. The following topic will introduce you to a solution to this.

Docstring Comments:

Docstrings are not actually comments, but, they are documentation strings. These

docstrings are within triple quotes. They are not assigned to any variable and therefore, at

times, serve the purpose of comments as well.

They are used particularly when you need to affiliate some documentation related to a class

or a function, etc.

Example:

1

2

3

4

5

6

7

8

"""

Using docstring as a comment.

This code divides 2 numbers

"""

x=8

y=4

z=x/y

print(z)

Output: 2.0

As you can see, the output does not contain the docstring, therefore, it has been omitted as it

appears before the code has started.

But if you execute just a docstring without the code below, as shown above, the output will

be the string itself.

Example:

1

2

3

4

"""

Using docstring as a comment.

This code divides 2 numbers

"""

Output: ‘

Using docstring as a comment.

This code divides 2 numbers

‘

In the above output, the docstring has been printed since it is not followed by any code.

Now, in case it would be present after the code was written, the docstring will still be printed

after the result.

Example:

1

2

3

4

5

6

7

8

x=8

y=4

z=x/y

print(z)

"""

Using docstring as a comment.

This code divides 2 numbers

"""

 User Input

 Python user input from the keyboard can be read using the input() built-in function.

 The input from the user is read as a string and can be assigned to a variable.

 After entering the value from the keyboard, we have to press the “Enter” button.

Then the input() function reads the value entered by the user.

 The program halts indefinitely for the user input. There is no option to provide

timeout value.

 If we enter EOF (*nix: Ctrl-D, Windows: Ctrl-Z+Return), EOFError is raised and

the program is terminated.

Syntax of input() Function

The syntax of input() function is:

input(prompt)

The prompt string is printed on the console and the control is given to the user to enter the

value. You should print some useful information to guide the user to enter the expected

value.

Getting User Input in Python

Here is a simple example of getting the user input and printing it on the console.

value = input("Please enter a string:\n")

print(f'You entered {value}')

Output:

Python User Input

What is the type of user entered value?

The user entered value is always converted to a string and then assigned to the variable. Let’s

confirm this by using type() function to get the type of the input variable.

value = input("Please enter a string:\n")

print(f'You entered {value} and its type is {type(value)}')

value = input("Please enter an integer:\n")

print(f'You entered {value} and its type is {type(value)}')

Output:
Please enter a string:

Python

You entered Python and its type is <class 'str'>

Please enter an integer:

123

You entered 123 and its type is <class 'str'>

How to get an Integer as the User Input?

There is no way to get an integer or any other type as the user input. However, we can use

the built-in functions to convert the entered string to the integer.

value = input("Please enter an integer:\n")

value = int(value)

print(f'You entered {value} and its square is {value ** 2}')

Output:

Python User Input Integer

Python user input and EOFError Example

When we enter EOF, input() raises EOFError and terminates the program. Let’s look at a

simple example using PyCharm IDE.

value = input("Please enter an integer:\n")

print(f'You entered {value}')

Output:

Please enter an integer:

^D

Traceback (most recent call last):

 File "/Users/pankaj/Documents/PycharmProjects/PythonTutorialPro/hello-

world/user_input.py", line 1, in <module>

 value = input("Please enter an integer:\n")

EOFError: EOF when reading a line

Python User Input raises EOFError

Python User Input Choice Example

We can build an intelligent system by giving choice to the user and taking the user input to

proceed with the choice.

value1 = input("Please enter first integer:\n")

value2 = input("Please enter second integer:\n")

v1 = int(value1)

v2 = int(value2)

choice = input("Enter 1 for addition.\nEnter 2 for subtraction.\nEnter 3 for

Multiplication.:\n")

choice = int(choice)

if choice == 1:

 print(f'You entered {v1} and {v2} and their addition is {v1 + v2}')

elif choice == 2:

 print(f'You entered {v1} and {v2} and their subtraction is {v1 - v2}')

elif choice == 3:

 print(f'You entered {v1} and {v2} and their multiplication is {v1 * v2}')

else:

 print("Wrong Choice, terminating the program.")

Here is a sample output from the execution of the above program.

 Decision making and Branching

 Decisions in a program are used when the program has conditional choices to execute a code

block. Let's take an example of traffic lights, where different colors of lights lit up in

different situations based on the conditions of the road or any specific rule.

It is the prediction of conditions that occur while executing a program to specify actions.

Multiple expressions get evaluated with an outcome of either TRUE or FALSE. These are

logical decisions, and Python also provides decision-making statements that to make

decisions within a program for an application based on the user requirement.

Python provides various types of conditional statements:

Python Conditional Statements

Statement Description

if Statements
It consists of a Boolean expression which results are either TRUE or

FALSE, followed by one or more statements.

if else Statements

It also contains a Boolean expression. The if the statement is

followed by an optional else statement & if the expression results in

FALSE, then else statement gets executed. It is also called

alternative execution in which there are two possibilities of the

condition determined in which any one of them will get executed.

Nested Statements
We can implement if statement and or if-else statement inside

another if or if - else statement. Here more than one if conditions are

applied & there can be more than one if within elif.

Table of Contents

1. if Statement

2. if else Statements

3. elif Statements

4. Single Statement Condition

The decision-making structures can be recognized and understood using flowcharts.

Figure - If condition Flowchart:

if expression:

 #execute your code

a = 15

if a > 10:

 print("a is greater")

a is greater

Figure - If else condition Flowchart:

if expression:

 #execute your code

else:

 #execute your code

a = 15

b = 20

if a > b:

 print("a is greater")

else:

 print("b is greater")

b is greater

elif - is a keyword used in Python replacement of else if to place another condition in the

program. This is called chained conditional.

Figure - elif condition Flowchart:

if expression:

 #execute your code

elif expression:

 #execute your code

else:

 #execute your code

a = 15

b = 15

if a > b:

 print("a is greater")

elif a == b:

 print("both are equal")

else:

 print("b is greater")

both are equal

We can write if statements in both ways, within parenthesis or without parenthesis/ brackets,

i.e. (and).

If the block of an executable statement of if - clause contains only a single line, programmers

can write it on the same line as a header statement.

a = 15

if (a == 15): print("The value of a is 15")

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 1

Looping :

While loop statement :
A while loop statement in Python programming language repeatedly executes a target

statement as long as a given condition is true.

Syntax

while expression:

 statement(s)

Here, statement(s) may be a single statement or a block of statements. The condition may

be any expression, and true is any non-zero value. The loop iterates while the condition is

true.

When the condition becomes false, program control passes to the line immediately

following the loop.

In Python, all the statements indented by the same number of character spaces after a

programming construct are considered to be part of a single block of code. Python uses

indentation as its method of grouping statements.

Flow Diagram

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 2

Here, key point of the while loop is that the loop might not ever run. When the condition

is tested and the result is false, the loop body will be skipped and the first statement after

the while loop will be executed.

Example:

count = 0

while (count < 9):

 print 'The count is:', count

 count = count + 1

When the above code is executed, it produces the following result −

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

The count is: 6

The count is: 7

The count is: 8

The block here, consisting of the print and increment statements, is executed repeatedly

until count is no longer less than 9. With each iteration, the current value of the index count

is displayed and then increased by 1.

Using else Statement with While Loop

Python supports to have an else statement associated with a loop statement.

• If the else statement is used with a while loop, the else statement is executed when the

condition becomes false.

The following example illustrates the combination of an else statement with a while statement

that prints a number as long as it is less than 5, otherwise else statement gets executed.

count = 0

while count < 5:

 print count, " is less than 5"

 count = count + 1

else:

 print count, " is not less than 5"

When the above code is executed, it produces the following result −

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 3

0 is less than 5

1 is less than 5

2 is less than 5

3 is less than 5

4 is less than 5

5 is not less than 5

For loop statement :

It has the ability to iterate over the items of any sequence, such as a list or a string.

Syntax

for iterating_var in sequence:

 statements(s)

If a sequence contains an expression list, it is evaluated first. Then, the first item in the sequence

is assigned to the iterating variable iterating_var. Next, the statements block is executed. Each

item in the list is assigned to iterating_var, and the statement(s) block is executed until the entire

sequence is exhausted.

Flow Diagram

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 4

Example:

for letter in 'Python':

print 'Current Letter :', letter

When the above code is executed, it produces the following result −

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : h

Current Letter : o

Current Letter : n

Example:

fruits = ['banana', 'apple', 'mango']

for fruit in fruits: # Second Example

 print 'Current fruit :', fruit

When the above code is executed, it produces the following result −

Current fruit : banana

Current fruit : apple

Current fruit : mango

Using else Statement with For Loop

Python supports to have an else statement associated with a loop statement

• If the else statement is used with a for loop, the else statement is executed when the loop

has exhausted iterating the list.

The following example illustrates the combination of an else statement with a for statement that

searches for prime numbers from 10 through 20.

for num in range(10,20): #to iterate between 10 to 20

 for i in range(2,num): #to iterate on the factors of the number

 if num%i == 0: #to determine the first factor

 j=num/i #to calculate the second factor

 print '%d equals %d * %d' % (num,i,j)

 break #to move to the next number, the #first FOR

 else: # else part of the loop

 print num, 'is a prime number'

 break

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 5

When the above code is executed, it produces the following result −

10 equals 2 * 5

11 is a prime number

12 equals 2 * 6

13 is a prime number

14 equals 2 * 7

15 equals 3 * 5

16 equals 2 * 8

17 is a prime number

18 equals 2 * 9

19 is a prime number

Python collections :

The most basic data structure in Python is the sequence. Each element of a sequence is assigned a

number - its position or index. The first index is zero, the second index is one, and so forth.

There are certain things you can do with all sequence types. These operations include indexing,

slicing, adding, multiplying, and checking for membership. In addition, Python has built-in

functions for finding the length of a sequence and for finding its largest and smallest elements.

Python Lists :

The list is a most versatile datatype available in Python which can be written as a list of comma-

separated values (items) between square brackets. Important thing about a list is that items in a

list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square brackets.

For example −

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"]

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

Accessing Values in Lists

To access values in lists, use the square brackets for slicing along with the index or indices to

obtain value available at that index. For example –

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5, 6, 7];

print "list1[0]: ", list1[0]

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 6

print "list2[1:5]: ", list2[1:5]

When the above code is executed, it produces the following result −

list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

Updating Lists:

You can update single or multiple elements of lists by giving the slice on the left-hand side of the

assignment operator, and you can add to elements in a list with the append() method. For example

−

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : "

print list[2]

list[2] = 2001;

print "New value available at index 2 : "

print list[2]

When the above code is executed, it produces the following result −

Value available at index 2 :

1997

New value available at index 2 :

2001

Delete List Elements:

To remove a list element, you can use either the del statement if you know exactly which

element(s) you are deleting or the remove() method if you do not know. For example −

list1 = ['physics', 'chemistry', 1997, 2000];

print list1

del list1[2];

print "After deleting value at index 2 : "

print list1

When the above code is executed, it produces following result −

['physics', 'chemistry', 1997, 2000]

After deleting value at index 2 :

['physics', 'chemistry', 2000]

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 7

Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and repetition

here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations:

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 8

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Indexing, Slicing and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for

strings.

Assuming following input −

L = ['spam', 'Spam', 'SPAM!']

Python Expression Results Description

L[2] SPAM! Offsets start at zero

L[-2] Spam Negative: count from the right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

Built-in List Functions & Methods

Sr.No. Function with Description

1 cmp(list1, list2) ->Compares elements of both lists.

2 len(list)->Gives the total length of the list.

3 max(list)->Returns item from the list with max value.

4 min(list)->Returns item from the list with min value.

https://www.tutorialspoint.com/python/list_cmp.htm
https://www.tutorialspoint.com/python/list_len.htm
https://www.tutorialspoint.com/python/list_max.htm
https://www.tutorialspoint.com/python/list_min.htm

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 9

Python includes the following list functions −

Python includes following list methods

Sr.No. Methods with Description

1 list.append(obj)->Appends object obj to list

2 list.count(obj)->Returns count of how many times obj occurs in list

3 list.extend(seq)->Appends the contents of seq to list

4 list.index(obj)->Returns the lowest index in list that obj appears

5 list.insert(index, obj)->Inserts object obj into list at offset index

6 list.pop(obj=list[-1])->Removes and returns last object or obj from list

7 list.remove(obj)->Removes object obj from list

8 list.reverse()->Reverses objects of list in place

9 list.sort([func])->Sorts objects of list, use compare func if given

Tuple :

A tuple is a collection of objects which ordered and immutable. Tuples are sequences, just like

lists. The differences between tuples and lists are, the tuples cannot be changed unlike lists and

tuples use parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally you can put

these comma-separated values between parentheses also. For example −

5 list(seq)->Converts a tuple into list.

https://www.tutorialspoint.com/python/list_append.htm
https://www.tutorialspoint.com/python/list_count.htm
https://www.tutorialspoint.com/python/list_extend.htm
https://www.tutorialspoint.com/python/list_index.htm
https://www.tutorialspoint.com/python/list_insert.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_remove.htm
https://www.tutorialspoint.com/python/list_reverse.htm
https://www.tutorialspoint.com/python/list_sort.htm
https://www.tutorialspoint.com/python/list_list.htm

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 10

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5);

tup3 = "a", "b", "c", "d";

The empty tuple is written as two parentheses containing nothing −

tup1 = ();

To write a tuple containing a single value you have to include a comma, even though there is only

one value −

tup1 = (50,);

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.

Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices to

obtain value available at that index. For example −

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5, 6, 7);

print "tup1[0]: ", tup1[0];

print "tup2[1:5]: ", tup2[1:5];

When the above code is executed, it produces the following result −

tup1[0]: physics

tup2[1:5]: [2, 3, 4, 5]

Updating Tuples

Tuples are immutable which means you cannot update or change the values of tuple elements.

You are able to take portions of existing tuples to create new tuples as the following example

demonstrates −

tup1 = (12, 34.56);

tup2 = ('abc', 'xyz');

Following action is not valid for tuples

tup1[0] = 100;

So let's create a new tuple as follows

tup3 = tup1 + tup2;

print tup3;

When the above code is executed, it produces the following result −

(12, 34.56, 'abc', 'xyz')

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 11

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with

putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example −

tup = ('physics', 'chemistry', 1997, 2000);

print tup;

del tup;

print "After deleting tup : ";

print tup;

This produces the following result. Note an exception raised, this is because after del tup tuple

does not exist any more −

('physics', 'chemistry', 1997, 2000)

After deleting tup :

Traceback (most recent call last):

 File "test.py", line 9, in <module>

 print tup;

NameError: name 'tup' is not defined

Basic Tuples Operations

Tuples respond to the + and * operators much like strings; they mean concatenation and repetition

here too, except that the result is a new tuple, not a string.

In fact, tuples respond to all of the general sequence operations we used on strings in the prior

chapter −

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 12

for x in (1, 2, 3): print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because tuples are sequences, indexing and slicing work the same way for tuples as they do for

strings. Assuming following input −

L = ('spam', 'Spam', 'SPAM!')

Python Expression Results Description

L[2] 'SPAM!' Offsets start at zero

L[-2] 'Spam' Negative: count from the

right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

Built-in Tuple Functions

Python includes the following tuple functions −

Sr.No. Function with Description

1 cmp(tuple1, tuple2)->Compares elements of both tuples.

2 len(tuple)->Gives the total length of the tuple.

3 max(tuple)->Returns item from the tuple with max value.

https://www.tutorialspoint.com/python/tuple_cmp.htm
https://www.tutorialspoint.com/python/tuple_len.htm
https://www.tutorialspoint.com/python/tuple_max.htm

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 13

4 min(tuple)->Returns item from the tuple with min value.

5 tuple(seq)->Converts a list into tuple.

Set

Mathematically a set is a collection of items not in any particular order. A Python set is similar

to this mathematical definition with below additional conditions.

• The elements in the set cannot be duplicates.

• The elements in the set are immutable(cannot be modified) but the set as a whole is

mutable.

• There is no index attached to any element in a python set. So they do not support any

indexing or slicing operation.

Set Operations

The sets in python are typically used for mathematical operations like union, intersection,

difference and complement etc. We can create a set, access it’s elements and carry out these

mathematical operations as shown below.

Creating a set

A set is created by using the set() function or placing all the elements within a pair of curly braces.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"])

Months={"Jan","Feb","Mar"}

Dates={21,22,17}

print(Days)

print(Months)

print(Dates)

When the above code is executed, it produces the following result. Please note how the order of

the elements has changed in the result.

set(['Wed', 'Sun', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

set(['Jan', 'Mar', 'Feb'])

set([17, 21, 22])

https://www.tutorialspoint.com/python/tuple_min.htm
https://www.tutorialspoint.com/python/tuple_tuple.htm

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 14

Accessing Values in a Set

We cannot access individual values in a set. We can only access all the elements together as

shown above. But we can also get a list of individual elements by looping through the set.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"])

for d in Days:

 print(d)

When the above code is executed, it produces the following result.

Wed

Sun

Fri

Tue

Mon

Thu

Sat

Adding Items to a Set

We can add elements to a set by using add() method. Again as discussed there is no specific index

attached to the newly added element.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat"])

Days.add("Sun")

print(Days)

When the above code is executed, it produces the following result.

set(['Wed', 'Sun', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

Removing Item from a Set

We can remove elements from a set by using discard() method. Again as discussed there is no

specific index attached to the newly added element.

Days=set(["Mon","Tue","Wed","Thu","Fri","Sat"])

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 15

Days.discard("Sun")

print(Days)

When the above code is executed, it produces the following result.

set(['Wed', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

Union of Sets

The union operation on two sets produces a new set containing all the distinct elements from both

the sets. In the below example the element “Wed” is present in both the sets.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])

AllDays = DaysA|DaysB

print(AllDays)

When the above code is executed, it produces the following result. Please note the result has only

one “wed”.

set(['Wed', 'Fri', 'Tue', 'Mon', 'Thu', 'Sat'])

Intersection of Sets

The intersection operation on two sets produces a new set containing only the common elements

from both the sets. In the below example the element “Wed” is present in both the sets.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])

AllDays = DaysA & DaysB

print(AllDays)

When the above code is executed, it produces the following result. Please note the result has only

one “wed”.

set(['Wed'])

Difference of Sets

The difference operation on two sets produces a new set containing only the elements from the

first set and none from the second set. In the below example the element “Wed” is present in both

the sets so it will not be found in the result set.

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 16

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Wed","Thu","Fri","Sat","Sun"])

AllDays = DaysA - DaysB

print(AllDays)

When the above code is executed, it produces the following result. Please note the result has only

one “wed”.

set(['Mon', 'Tue'])

Compare Sets

We can check if a given set is a subset or superset of another set. The result is True or False

depending on the elements present in the sets.

DaysA = set(["Mon","Tue","Wed"])

DaysB = set(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"])

SubsetRes = DaysA <= DaysB

SupersetRes = DaysB >= DaysA

print(SubsetRes)

print(SupersetRes)

When the above code is executed, it produces the following result.

True

True

Dictionary

Each key is separated from its value by a colon (:), the items are separated by commas, and the

whole thing is enclosed in curly braces. An empty dictionary without any items is written with

just two curly braces, like this: {}.

Keys are unique within a dictionary while values may not be. The values of a dictionary can be

of any type, but the keys must be of an immutable data type such as strings, numbers, or tuples.

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the key to

obtain its value. Following is a simple example −

Live Demo

http://tpcg.io/KTBDvD

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 17

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Name']: ", dict['Name']

print "dict['Age']: ", dict['Age']

When the above code is executed, it produces the following result −

dict['Name']: Zara

dict['Age']: 7

If we attempt to access a data item with a key, which is not part of the dictionary, we get an error

as follows −

Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print "dict['Alice']: ", dict['Alice']

When the above code is executed, it produces the following result −

dict['Alice']:

Traceback (most recent call last):

 File "test.py", line 4, in <module>

 print "dict['Alice']: ", dict['Alice'];

KeyError: 'Alice'

Updating Dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an existing

entry, or deleting an existing entry as shown below in the simple example −

Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

When the above code is executed, it produces the following result −

dict['Age']: 8

dict['School']: DPS School

Delete Dictionary Elements

http://tpcg.io/pzUOPx
http://tpcg.io/porcg2

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 18

You can either remove individual dictionary elements or clear the entire contents of a dictionary.

You can also delete entire dictionary in a single operation.

To explicitly remove an entire dictionary, just use the del statement. Following is a simple

example −

Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

del dict['Name']; # remove entry with key 'Name'

dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age']

print "dict['School']: ", dict['School']

This produces the following result. Note that an exception is raised because after del

dict dictionary does not exist any more −

dict['Age']:

Traceback (most recent call last):

 File "test.py", line 8, in <module>

 print "dict['Age']: ", dict['Age'];

TypeError: 'type' object is unsubscriptable

Note − del() method is discussed in subsequent section.

Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, either standard

objects or user-defined objects. However, same is not true for the keys.

There are two important points to remember about dictionary keys −

(a) More than one entry per key not allowed. Which means no duplicate key is allowed. When

duplicate keys encountered during assignment, the last assignment wins. For example −

Live Demo

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result −

dict['Name']: Manni

(b) Keys must be immutable. Which means you can use strings, numbers or tuples as dictionary

keys but something like ['key'] is not allowed. Following is a simple example −

Live Demo

http://tpcg.io/mbvT73
http://tpcg.io/rEJFby
http://tpcg.io/BLKmXZ

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 19

#!/usr/bin/python

dict = {['Name']: 'Zara', 'Age': 7}

print "dict['Name']: ", dict['Name']

When the above code is executed, it produces the following result −

Traceback (most recent call last):

 File "test.py", line 3, in <module>

 dict = {['Name']: 'Zara', 'Age': 7};

TypeError: unhashable type: 'list'

Built-in Dictionary Functions & Methods

Python includes the following dictionary functions −

Sr.No. Function with Description

1 cmp(dict1, dict2)

Compares elements of both dict.

2 len(dict)

Gives the total length of the dictionary. This would be equal to the number of items in

the dictionary.

3 str(dict)

Produces a printable string representation of a dictionary

4 type(variable)

Returns the type of the passed variable. If passed variable is dictionary, then it would

return a dictionary type.

Python includes following dictionary methods −

Sr.No. Methods with Description

1 dict.clear()

Removes all elements of dictionary dict

https://www.tutorialspoint.com/python/dictionary_cmp.htm
https://www.tutorialspoint.com/python/dictionary_len.htm
https://www.tutorialspoint.com/python/dictionary_str.htm
https://www.tutorialspoint.com/python/dictionary_type.htm
https://www.tutorialspoint.com/python/dictionary_clear.htm

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 20

2 dict.copy()

Returns a shallow copy of dictionary dict

3 dict.fromkeys()

Create a new dictionary with keys from seq and values set to value.

4 dict.get(key, default=None)

For key key, returns value or default if key not in dictionary

5 dict.has_key(key)

Returns true if key in dictionary dict, false otherwise

6 dict.items()

Returns a list of dict's (key, value) tuple pairs

7 dict.keys()

Returns list of dictionary dict's keys

8 dict.setdefault(key, default=None)

Similar to get(), but will set dict[key]=default if key is not already in dict

9 dict.update(dict2)

Adds dictionary dict2's key-values pairs to dict

10 dict.values()

Returns list of dictionary dict's values

Array

Array is a container which can hold a fix number of items and these items should be of the same

type. Most of the data structures make use of arrays to implement their algorithms. Following are

the important terms to understand the concept of Array.

• Element− Each item stored in an array is called an element.

https://www.tutorialspoint.com/python/dictionary_copy.htm
https://www.tutorialspoint.com/python/dictionary_fromkeys.htm
https://www.tutorialspoint.com/python/dictionary_get.htm
https://www.tutorialspoint.com/python/dictionary_has_key.htm
https://www.tutorialspoint.com/python/dictionary_items.htm
https://www.tutorialspoint.com/python/dictionary_keys.htm
https://www.tutorialspoint.com/python/dictionary_setdefault.htm
https://www.tutorialspoint.com/python/dictionary_update.htm
https://www.tutorialspoint.com/python/dictionary_values.htm

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 21

• Index − Each location of an element in an array has a numerical index, which is used to identify

the element.

Array Representation

Arrays can be declared in various ways in different languages. Below is an illustration.

As per the above illustration, following are the important points to be considered.

• Index starts with 0.

• Array length is 10 which means it can store 10 elements.

• Each element can be accessed via its index. For example, we can fetch an element at index

6 as 9.

Basic Operations

Following are the basic operations supported by an array.

• Traverse − print all the array elements one by one.

• Insertion − Adds an element at the given index.

• Deletion − Deletes an element at the given index.

• Search − Searches an element using the given index or by the value.

• Update − Updates an element at the given index.

Array is created in Python by importing array module to the python program. Then the array is

declared as shown eblow.

from array import *

arrayName = array(typecode, [Initializers])

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 22

Typecode are the codes that are used to define the type of value the array will hold. Some common

typecodes used are:

Typecode Value

b Represents signed integer of size 1 byte/td>

B Represents unsigned integer of size 1 byte

c Represents character of size 1 byte

i Represents signed integer of size 2 bytes

I Represents unsigned integer of size 2 bytes

f Represents floating point of size 4 bytes

d Represents floating point of size 8 bytes

Before lookign at various array operations lets create and print an array using python.

The below code creates an array named array1.

from array import *

array1 = array('i', [10,20,30,40,50])

for x in array1:

 print(x)

When we compile and execute the above program, it produces the following result −

Output

10

20

30

40

50

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 23

Accessing Array Element

We can access each element of an array using the index of the element. The below code shows

how

from array import *

array1 = array('i', [10,20,30,40,50])

print (array1[0])

print (array1[2])

When we compile and execute the above program, it produces the following result − which shows

the element is inserted at index position 1.

Output

10

30

Insertion Operation

Insert operation is to insert one or more data elements into an array. Based on the requirement, a

new element can be added at the beginning, end, or any given index of array.

Here, we add a data element at the middle of the array using the python in-built insert() method.

from array import *

array1 = array('i', [10,20,30,40,50])

array1.insert(1,60)

for x in array1:

 print(x)

When we compile and execute the above program, it produces the following result which shows

the element is inserted at index position 1.

Output

10

60

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 24

20

30

40

50

Deletion Operation

Deletion refers to removing an existing element from the array and re-organizing all elements of

an array.

Here, we remove a data element at the middle of the array using the python in-built remove()

method.

from array import *

array1 = array('i', [10,20,30,40,50])

array1.remove(40)

for x in array1:

 print(x)

When we compile and execute the above program, it produces the following result which shows

the element is removed form the array.

Output

10

20

30

50

Search Operation

You can perform a search for an array element based on its value or its index.

Here, we search a data element using the python in-built index() method.

from array import *

array1 = array('i', [10,20,30,40,50])

print (array1.index(40))

When we compile and execute the above program, it produces the following result which shows

the index of the element. If the value is not present in the array then th eprogram returns an error.

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 25

Output

3

Update Operation

Update operation refers to updating an existing element from the array at a given index.

Here, we simply reassign a new value to the desired index we want to update.

from array import *

array1 = array('i', [10,20,30,40,50])

array1[2] = 80

for x in array1:

 print(x)

When we compile and execute the above program, it produces the following result which shows

the new value at the index position 2.

Output

10

20

80

40

50

What is String in Python?

• A string is a sequence of characters.

• Strings are amongst the most popular types in Python.

• In python strings can be created by enclosing characters inside a single quote or double-quotes.

• Creating strings is as simple as assigning a value to a variable.

• For example −

 s1 = ‘Good Morning to All'

 s2 = "Python Programming"

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 26

Accessing characters in Python

• In Python, individual characters of a String can be accessed by using the method of Indexing.

• Indexing allows negative address references to access characters from the back of the String,

• e.g. -1 refers to the last character, -2 refers to the second last character and so on.

Index is started from 0.

• While accessing an index out of the range will cause an IndexError.

• Only Integers are allowed to be passed as an index, float or other types will cause a TypeError.

• Example:

>>> s1="Good Morning"

>>> print(s1[0],s1[1]) O/p is - G o

>>> print(s1[-1]) o/p is – g

• We can access a range of items in a string by using the slicing operator :(colon).

Example:

>>> print(s1[0:4]) o/p is Good

Python String Formatting

Escape Sequence

If we want to print a text like He said, "What's there?", we can neither use single quotes nor double

quotes.

This will result in a SyntaxError as the text itself contains both single and double quotes.

>>> print("He said, "What's there?"")

...

SyntaxError: invalid syntax

>>> print('He said, "What's there?"')

...

SyntaxError: invalid syntax

One way to get around this problem is to use triple quotes. Alternatively, we can use escape

sequences.

An escape sequence starts with a backslash and is interpreted differently.

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 27

 If we use a single quote or double quote to represent a string, all the single quotes inside the string

must be escaped.

Examples:

using triple quotes

print('''He said, "What's there?"''') o/p is - He said, "What's there?"

escaping single quotes

print('He said, "What\'s there?"') o/p is - He said, "What's there?"

escaping double quotes

print("He said, \"What's there?\"") o/p is - He said, "What's there?"

The following table lists escape sequences in Python.

Escape sequence Description Example

\\ Backslash
>>> "Hello\\Hi"

Hello\Hi

\b Backspace
>>> "ab\bc"

ac

\f Form feed

\n Newline

>>> "hello\nworld"

Hello

world

\nnn
Octal notation, where n is in

the range 0-7

>>> '\101'

A

\t Tab
>>> 'Hello\tPython'

Hello Python

\xnn

Hexadecimal notation, where

n is in the range 0-9, a-f, or

A-F

>>> '\x48\x69'

Hi

\onn
Octal notation, where n is in

the range 0-9

>>> "\110\151"

Hi

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 28

String Special Operators

Assume string variable a holds 'Hello' and variable b holds 'Python', then −

Operator Description Example

+
It is used to concatenate two strings.

It joins two strings.
a + b will give HelloPython

*

It is a repetitive operator.

If we want to repeat a string then just put the string

and number and repetition operator * together.

a*2 will give -HelloHello

[] Slice - Gives the character from the given index a[1] will give e

[:]

Range Slice - Gives the characters from the given

range

Syntax: string_var[n:m]

Where n is starting number and m is ending number.

Both n and m are integers.

a[1:4] will give ell

in

It is a membership operator.

It returns true if a given character exists in the given

string.

H in a will give 1

not in

It is a membership operator.

It returns true if a character does not exist in the given

string.

M not in a will give 1

r/R

Raw String - Suppresses actual meaning of Escape

characters. The syntax for raw strings is exactly the

same as for normal strings with the exception of the

raw string operator, the letter "r," which precedes the

quotation marks. The "r" can be lowercase (r) or

uppercase (R) and must be placed immediately

preceding the first quote mark.

print r'\n' prints \n and print

R'\n'prints \n

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 29

String Formatting Operator

One of Python's coolest features is the string format operator %. This operator is unique to strings

and makes up for the pack of having functions from C's printf() family.

Example:

>>> print ("My name is %s and roll no is %d" % ('Rahul', 21))

 o/p is - My name is Rahul and roll no is 21

Here is the list of complete set of symbols which can be used along with % −

Format

Symbol
Conversion

%c character

%s string conversion via str() prior to formatting

%i signed decimal integer

%d signed decimal integer

%u unsigned decimal integer

%o octal integer

%x hexadecimal integer (lowercase letters)

%X hexadecimal integer (UPPERcase letters)

%e exponential notation (with lowercase 'e')

%E exponential notation (with UPPERcase 'E')

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

String Built in Functions and Methods:

1) len() : It returns the length of the given string.

Syntax: len(string)

Example: >>>s="Good Morning"

>>> print(len(s)) o/p is =12

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 30

2) capitalize(): It returns a copy of the string with only its first character capitalized and

remaining in lowercase.

Syntax: str.capitalize()

Example:

>>>s="Good Morning"

>>>print(s.capitalize()) o/p is = Good morning

3) find() : This method determines if string str occurs in string, or in a substring of string if

starting index beg and ending index end are given.

Syntax: str.find(str, beg=0, end=len(string))

Parameters

• str − This specifies the string to be searched.

• beg − This is the starting index, by default its 0.

• end − This is the ending index, by default its equal to the length of the string.

Return Value: Index if found and -1 otherwise.

Example:

>>> s1="This is testing"

>>> s2="is"

>>> print(s1.find(s2)) o/p is = 2

>>> print(s1.find(s2,5)) o/p is = 5

4) Isalnum(): Python string method isalnum() checks whether the string consists of

alphanumeric characters.

Syntax: str.isalnum()

Return Value: This method returns true if all characters in the string are alphanumeric and

there is at least one character, false otherwise.

Example:

>>> s1="this1234"

>>> print(s1.isalnum()) o/p is = True

5) isalpha() : This method checks whether the string consists of alphabetic characters only.

Syntax: str.isalpha()

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 31

Return Value: This method returns true if all characters in the string are alphabetic and there

is at least one character, false otherwise.

Example:

>>> s1="this1234"

>>> print(s1.isalnum()) o/p is = True

6) isdigit() :Python string method isdigit() checks whether the string consists of digits only.

Syntax: str.isdigit()

Return Value: This method returns true if all characters in the string are digits and there is at

least one character, false otherwise.

Example:

>>> s1="1234Hello"

>>> print(s1.isdigit()) o/p is =False

>>> s2="12345"

>>> print(s2.isdigit()) o/p is= True

7) Lower() : This method returns a copy of the string in which all case-based characters have

been lowercased.

Syntax: str.lower()

Return Value: This method returns a copy of the string in which all case-based characters have

been lowercased.

Example:

>>> s3="GOOD MORNING"

>>> print(s3.lower()) o/p is good morning

8) Islower(): This method checks whether all the case-based characters (letters) of the string are

lowercase.

Syntax: str.islower()

Return Value: This method returns true if all cased characters in the string are lowercase and

there is at least one cased character, false otherwise.

Example:

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 32

>>>s3="GOOD MORNING"

>>> print(s3.islower()) o/p is = False

>>> s1="hello"

>>> print(s1.islower()) o/p is = True

9) upper(): this method returns a copy of the string in which all case-based characters have been

uppercased.

Syntax: str.upper()

Return Value: This method returns a copy of the string in which all case-based characters have

been uppercased.

Example:

>>> s3="hello"

>>> print(s3.upper()) o/p is = HELLO

10) isupper() : this method checks whether all the case-based characters (letters) of the string are

uppercase.

Syntax: str.isupper()

Return Value: This method returns true if all cased characters in the string are uppercase and

there is at least one cased character, false otherwise.

Example:

>>> s3="HELLO"

>>> print(s3.isupper()) o/p is = True

11) lstrip(): This function returns a copy of the string in which all chars have been stripped from

the beginning of the string (default whitespace characters).

Syntax: str.lstrip([chars])

Parameters

• chars − You can supply what chars have to be trimmed.

Return Value: This method returns a copy of the string in which all chars have been stripped

from the beginning of the string (default whitespace characters).

Examples:

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 33

>>> s2="******this is testing***"

>>> print(s2.lstrip("*")) o/p is = this is testing***

12) rstrip() : this method returns a copy of the string in which all chars have been stripped from

the end of the string (default whitespace characters).

Syntax: str.rstrip([chars])

Parameters

• chars − You can supply what chars have to be trimmed.

Return Value : This method returns a copy of the string in which all chars have been stripped

from the end of the string (default whitespace characters).

Example:

>>> s2="******this is testing***"

>>> print(s2.rstrip("*")) o/p is = ******this is testing

13) isspace() : this method checks whether the string consists of whitespace.

Syntax: str.isspace()

Return Value: This method returns true if there are only whitespace characters in the string and

there is at least one character, false otherwise.

Example

>>> s1=" "

>>> print(s1.isspace()) o/p is = True

>>> s2="hello"

>>> print(s2.isspace()) o/p is = False

14) istitle(): This method checks whether all the case-based characters in the string following non-

casebased letters are uppercase and all other case-based characters are lowercase.

Syntax: str.istitle()

Return Value: This method returns true if the string is a titlecased string and there is at least

one character, for example uppercase characters may only follow uncased characters and

lowercase characters only cased ones.It returns false otherwise.

Examples:

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 34

>>> s1="This Is Tsting"

>>> print(s1.istitle()) o/p is = True

>>> s2=="this is testing"

>>> print(s2.istitle()) o/p is = False

15) Replace() : this method returns a copy of the string in which the occurrences of old have been

replaced with new, optionally restricting the number of replacements to max.

Syntax: str.replace(old, new[, max])

Parameters

• old − This is old substring to be replaced.

• new − This is new substring, which would replace old substring.

• max − If this optional argument max is given, only the first count occurrences are

replaced.

Return Value: This method returns a copy of the string with all occurrences of substring old

replaced by new. If the optional argument max is given, only the first count occurrences are

replaced.

Examples:

>>> s1="This is Red Rose"

>>> print(s1.replace("Rose","Dress")) o/p is = This is Red Dress

>>> s2="This is testing"

>>> print(s2.replace("is","was")) o/p is = Thwas was testing

16) join() : This method returns a string in which the string elements of sequence have been joined

by str separator.

Syntax: str.join(sequence)

Parameters

• sequence − This is a sequence of the elements to be joined.

Return Value: This method returns a string, which is the concatenation of the strings in the

sequence seq. The separator between elements is the string providing this method.

Example:

>>> a="-"

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 35

>>> b=('A','B','C','D')

>>> print(a.join(b)) o/p is = A-B-C-D

17) split() : This method returns a list of all the words in the string, using str as the separator (splits

on all whitespace if left unspecified), optionally limiting the number of splits to num.

Syntax: str.split(str="", num=string.count(str)).

Parameters

• str − This is any delimeter, by default it is space.

• num − this is number of lines minus one

Return Value: This method returns a list of lines.

Examples:

>>> s1="My name is Rahul \n I stay in Anand \n I study in TYBCA"

>>> print(s1.split())

['My', 'name', 'is', 'Rahul', 'I', 'stay', 'in', 'Anand', 'I', 'study', 'in', 'TYBCA']

>>> print(s1.split("\n",2))

['My name is Rahul ', ' I stay in Anand ', ' I study in TYBCA']

>>> print(s1.split(' ',2))

['My', 'name', 'is Rahul \n I stay in Anand \n I study in TYBCA']

18) count(): This method returns the number of occurrences of substring sub in the range [start,

end]. Optional arguments start and end are interpreted as in slice notation.

Syntax: str.count(sub, start= 0,end=len(string))

Parameters

• sub − This is the substring to be searched.

• start − Search starts from this index. First character starts from 0 index. By default

search starts from 0 index.

• end − Search ends from this index. First character starts from 0 index. By default

search ends at the last index.

Return Value: Centered in a string of length width.

Example:

>>> s2="This is testing"

>>> print(s2.count('i',5,20)) o/p is = 2

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 36

>>> print(s2.count('i')) o/p is = 3

19) swapcase() : This method returns a copy of the string in which all the case-based characters

have had their case swapped.

Syntax: str.swapcase();

Return Value: This method returns a copy of the string in which all the case-based characters

have had their case swapped.

Example:

>>> s1="Good afternoon"

>>> print(s1.swapcase()) o/p is = gOOD AFTERNOON

Python RegEx

• A RegEx, or Regular Expression, is a sequence of characters that forms a search pattern.

• RegEx can be used to check if a string contains the specified search pattern.

RegEx Module

Python has a built-in package called re, which can be used to work with Regular Expressions.

Import the re module:

import re

Metacharacters

Metacharacters are characters with a special meaning:

Character Description Example

[] A set of characters "[a-m]"

\ Signals a special sequence (can also be used to escape special characters) "\d"

. Any character (except newline character) "he..o"

^ Starts with "^hello"

$ Ends with "world$"

* Zero or more occurrences "aix*"

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 37

+ One or more occurrences "aix+"

{} Exactly the specified number of occurrences "al{2}"

| Either or "falls|stays"

() Capture and group

Example:

import re

#Check if the string starts with "T" or not:

txt = "This is testing"

x = re.search("^T", txt)

if x:

 print("Match found")

else:

 print("No match")

Special Sequences

A special sequence is a \ followed by one of the characters in the list below, and has a special

meaning:

Character Description Example

\A
Returns a match if the specified characters are at the beginning

of the string
"\AThe"

\b

Returns a match where the specified characters are at the

beginning or at the end of a word

(the "r" in the beginning is making sure that the string is being

treated as a "raw string")

r"\bain"

r"ain\b"

\B

Returns a match where the specified characters are present, but

NOT at the beginning (or at the end) of a word

(the "r" in the beginning is making sure that the string is being

treated as a "raw string")

r"\Bain"

r"ain\B"

\d
Returns a match where the string contains digits (numbers from

0-9)
"\d"

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 38

\D Returns a match where the string DOES NOT contain digits "\D"

\s Returns a match where the string contains a white space character "\s"

\S
Returns a match where the string DOES NOT contain a white

space character
"\S"

\w

Returns a match where the string contains any word characters

(characters from a to Z, digits from 0-9, and the underscore _

character)

"\w"

\W
Returns a match where the string DOES NOT contain any word

characters
"\W"

\Z
Returns a match if the specified characters are at the end of the

string
"Spain\Z"

Sets

A set is a set of characters inside a pair of square brackets [] with a special meaning:

Set Description

[arn] Returns a match where one of the specified characters (a, r, or n) are present

[a-n] Returns a match for any lower case character, alphabetically between a and n

[^arn] Returns a match for any character EXCEPT a, r, and n

[0123] Returns a match where any of the specified digits (0, 1, 2, or 3) are present

[0-9] Returns a match for any digit between 0 and 9

[0-5][0-9] Returns a match for any two-digit numbers from 00 and 59

[a-zA-Z]
Returns a match for any character alphabetically between a and z, lower case

OR upper case

[+]
In sets, +, *, ., |, (), $,{} has no special meaning, so [+] means: return a match

for any + character in the string

The findall() Function

The findall() function returns a list containing all matches.

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 39

The list contains the matches in the order they are found.

If no matches are found, an empty list is returned:

Example 1:

import re

#Return a list containing every occurrence of "is":

txt = "This is testing"

x = re.findall("is", txt)

print(x) o/p is ['is', 'is']

Example 2:

import re

txt = "This is testing"

x = re.findall("THIS", txt)

print(x)

if (x):

 print("Match Found")

else:

 print("Match not found")

O/p is

[]

Match not found

The search() Function

The search() function searches the string for a match, and returns a Match object if there is a match.

If there is more than one match, only the first occurrence of the match will be returned:

Example

import re

txt = "The rain in Spain"

x = re.search("\s", txt)

print("The first white-space character is located in position:", x.start())

o/p is - The digits are located in position: 16

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 40

The sub() Function

The sub() function replaces the matches with the text of your choice:

Syntax: re.sub(pattern,repl,string,max=0)

Pattern contains regular expression pattern.

Repl contains a string which user wants to change.

String contains the main string in which user wants to perform replacement.

Max contains the number of replacements which user wants to do.

Example

import re

#Replace all white-space characters with the digit "*":

txt = "This is testing"

x = re.sub("\s", "*", txt)

print(x) o/p is This*is*testing

Example

import re

#Replace the first two occurrences of a white-space character with the digit 9:

txt = "This is testing. so dont worry"

x = re.sub("\s", "9", txt, 2)

print(x) o/p is This9is9testing. so dont worry

Python JSON

JSON is a syntax for storing and exchanging data.

JSON is text, written with JavaScript object notation.

JSON in Python

Python has a built-in package called json, which can be used to work with JSON data.

Example

Import the json module:

import json

Parse JSON - Convert from JSON to Python

If you have a JSON string, you can parse it by using the json.loads() method.

Example:

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 41

import json

some JSON:

x = '{ "name":"John", "age":30, "city":"New York"}'

parse x:

y = json.loads(x)

the result is a Python dictionary:

print(y["age"])

Convert from Python to JSON

If you have a Python object, you can convert it into a JSON string by using the json.dumps()

method.

Example

import json

a Python object (dict):

x = {

 "name": "John",

 "age": 30,

 "city": "New York"

}

convert into JSON:

y = json.dumps(x)

the result is a JSON string:

print(y)

User can convert Python objects of the following types, into JSON strings:

• dict

• list

• tuple

• string

• int

• float

• True

• False

US06DBCA21 : Python Programming Unit 2- Python Structure with Basic Collation

 Page 42

• None

Example :

import json

print(json.dumps({"name": "John", "age": 30}))

print(json.dumps(["apple", "bananas"]))

print(json.dumps(("apple", "bananas")))

print(json.dumps("hello"))

print(json.dumps(42))

print(json.dumps(31.76))

print(json.dumps(True))

print(json.dumps(False))

print(json.dumps(None))

US01DBCA21 – Python Programming Unit-3

1 | P a g e

Unit – 3

Object Orientated Concept and Exception Handling with

Debugging

Functions

A function is a block of code which only runs when it is called. You can pass data,

known as parameters, into a function. A function can return data as a result.

Creating a Function

In Python a function is defined using the def keyword. For example,

def my_function():

 print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis. For example,

def my_function():

 print("Hello from a function")

my_function()

Arguments

Information can be passed into functions as arguments. Arguments are specified

after the function name, inside the parentheses. You can add as many arguments

as you want, just separate them with a comma. The following example has a

function with one argument (fname). When the function is called, we pass along a

first name, which is used inside the function to print the full name:

def my_function(fname):

 print(fname + " Refsnes")

my_function("Emil")

my_function("Tobias")

my_function("Linus")

Number of Arguments

By default, a function must be called with the correct number of arguments.

Meaning that if your function expects 2 arguments, you have to call the function

with 2 arguments, not more, and not less. In following example, function expects

2 arguments, and gets 2 arguments:

def my_function(fname, lname):

 print(fname + " " + lname)

my_function("Emil", "Refsnes")

Arbitrary Arguments, *args

If you do not know how many arguments that will be passed into your function,

add a * before the parameter name in the function definition. This way the function

will receive a tuple of arguments, and can access the items accordingly. For

example:

US01DBCA21 – Python Programming Unit-3

2 | P a g e

def my_function(*kids):

 print("The youngest child is " + kids[2])

my_function("Emil", "Tobias", "Linus")

Keyword Arguments

You can also send arguments with the key = value syntax. This way the order of

the arguments does not matter. Here is the example:

def my_function(child3, child2, child1):

 print("The youngest child is " + child3)

my_function(child1 = "Emil", child2 = "Tobias", child3 = "Linus")

Arbitrary Keyword Arguments, **kwargs

If you do not know how many keyword arguments that will be passed into your

function, add two asterisk: ** before the parameter name in the function definition.

This way the function will receive a dictionary of arguments, and can access the

items accordingly. See in example below:

def my_function(**kid):

 print("His last name is " + kid["lname"])

my_function(fname = "Tobias", lname = "Refsnes")

Default Parameter Value

The following example shows how to use a default parameter value. If we call the

function without argument, it uses the default value:

def my_function(country = "Norway"):

 print("I am from " + country)

my_function("Sweden")

my_function("India")

my_function()

my_function("Brazil")

Passing a List as an Argument

You can send any data types of argument to a function (string, number, list,

dictionary etc.), and it will be treated as the same data type inside the function.

E.g. if you send a List as an argument, it will still be a List when it reaches the

function:

def my_function(food):

 for x in food:

 print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

Return Values

To let a function return a value, use the return statement. For example:

US01DBCA21 – Python Programming Unit-3

3 | P a g e

def my_function(x):

 return 5 * x

print(my_function(3))

print(my_function(5))

print(my_function(9))

Python Scope
A variable is only available from inside the region it is created. This is called scope.

Local Scope

A variable created inside a function belongs to the local scope of that function, and

can only be used inside that function.

Example

A variable created inside a function is available inside that function:

def myfunc():

 x = 300

 print(x)

myfunc()

Function Inside Function

As explained in the example above, the variable x is not available outside the

function, but it is available for any function inside the function:

Example

The local variable can be accessed from a function within the function:

def myfunc():

 x = 300

 def myinnerfunc():

 print(x)

 myinnerfunc()

myfunc()

Global Scope

A variable created in the main body of the Python code is a global variable and

belongs to the global scope. Global variables are available from within any scope,

global and local.

Example

A variable created outside of a function is global and can be used by anyone:

x = 300

def myfunc():

 print(x)

myfunc()

print(x)

US01DBCA21 – Python Programming Unit-3

4 | P a g e

Naming Variables

If you operate with the same variable name inside and outside of a function, Python

will treat them as two separate variables, one available in the global scope (outside

the function) and one available in the local scope (inside the function).

Example

The function will print the local x, and then the code will print the global x:

x = 300

def myfunc():

 x = 200

 print(x)

myfunc()

print(x)

Global Keyword

If you need to create a global variable, but are stuck in the local scope, you can use

the global keyword. The global keyword makes the variable global.

Example

If you use the global keyword, the variable belongs to the global scope:

def myfunc():

 global x

 x = 300

myfunc()

print(x)

Python Iterators
An iterator is an object that contains a countable number of values. An iterator is

an object that can be iterated upon, meaning that you can traverse through all the

values. Technically, in Python, an iterator is an object which implements the

iterator protocol, which consist of the methods __iter__() and __next__().

Iterator vs Iterable

Lists, tuples, dictionaries, and sets are all iterable objects. They are iterable

containers which you can get an iterator from. All these objects have a iter() method

which is used to get an iterator.

Example

Return an iterator from a tuple, and print each value:

mytuple = ("apple", "banana", "cherry")

myit = iter(mytuple)

print(next(myit))

print(next(myit))

print(next(myit))

US01DBCA21 – Python Programming Unit-3

5 | P a g e

Even strings are iterable objects, and can return an iterator:

Example

Strings are also iterable objects, containing a sequence of characters:

mystr = "banana"

myit = iter(mystr)

print(next(myit))

print(next(myit))

print(next(myit))

print(next(myit))

print(next(myit))

print(next(myit))

Looping Through an Iterator

We can also use a for loop to iterate through an iterable object:

Example

Iterate the values of a tuple:

mytuple = ("apple", "banana", "cherry")

for x in mytuple:

 print(x)

Create an Iterator

To create an object/class as an iterator you have to implement the methods

__iter__() and __next__() to your object. As you have learned in the Python

Classes/Objects chapter, all classes have a function called __init__(), which allows

you to do some initializing when the object is being created.

The __iter__() method acts similar, you can do operations (initializing etc.), but must

always return the iterator object itself. The __next__() method also allows you to do

operations, and must return the next item in the sequence.

Example

Create an iterator that returns numbers, starting with 1, and each sequence will

increase by one (returning 1,2,3,4,5 etc.):

class MyNumbers:

 def __iter__(self):

 self.a = 1

 return self

 def __next__(self):

US01DBCA21 – Python Programming Unit-3

6 | P a g e

 x = self.a

 self.a += 1

 return x

myclass = MyNumbers()

myiter = iter(myclass)

print(next(myiter))

print(next(myiter))

print(next(myiter))

print(next(myiter))

print(next(myiter))

StopIteration

The example above would continue forever if you had enough next() statements, or

if it was used in a for loop. To prevent the iteration to go on forever, we can use the

StopIteration statement. In the __next__() method, we can add a terminating

condition to raise an error if the iteration is done a specified number of times:

Example

Stop after 20 iterations:

class MyNumbers:

 def __iter__(self):

 self.a = 1

 return self

 def __next__(self):

 if self.a <= 20:

 x = self.a

 self.a += 1

 return x

 else:

 raise StopIteration

myclass = MyNumbers()

myiter = iter(myclass)

for x in myiter:

 print(x)

US01DBCA21 – Python Programming Unit-3

7 | P a g e

Overview of OOP Terminology

• Class − A user-defined prototype for an object that defines a set of attributes

that characterize any object of the class. The attributes are data members

(class variables and instance variables) and methods, accessed via dot

notation.

• Class variable − A variable that is shared by all instances of a class. Class

variables are defined within a class but outside any of the class's methods.

Class variables are not used as frequently as instance variables are.

• Data member − A class variable or instance variable that holds data

associated with a class and its objects.

• Function overloading − The assignment of more than one behavior to a

particular function. The operation performed varies by the types of objects

or arguments involved.

• Instance variable − A variable that is defined inside a method and belongs

only to the current instance of a class.

• Inheritance − The transfer of the characteristics of a class to other classes

that are derived from it.

• Instance − An individual object of a certain class. An object obj that belongs

to a class Circle, for example, is an instance of the class Circle.

• Method − A special kind of function that is defined in a class definition.

• Object − A unique instance of a data structure that's defined by its class. An

object comprises both data members (class variables and instance variables)

and methods.

• Operator overloading − The assignment of more than one function to a

particular operator.

Concept of Class, object and instance
A class is a user-defined blueprint or prototype from which objects are created.

Classes provide a means of bundling data and functionality together. Creating a

new class creates a new type of object, allowing new instances of that type to be

made. Each class instance can have attributes attached to it for maintaining its

state. Class instances can also have methods (defined by its class) for modifying its

state.

To understand the need for creating a class let’s consider an example, let’s say you

wanted to track the number of dogs which may have different attributes like breed,

age. If a list is used, the first element could be the dog’s breed while the second

element could represent its age. Let’s suppose there are 100 different dogs, then

how would you know which element is supposed to be which? What if you wanted

to add other properties to these dogs? This lacks organization and it’s the exact

need for classes.

Class creates a user-defined data structure, which holds its own data members

and member functions, which can be accessed and used by creating an instance

of that class. A class is like a blueprint for an object.

US01DBCA21 – Python Programming Unit-3

8 | P a g e

Some points on Python class:

• Classes are created by keyword class.

• Attributes are the variables that belong to class.

• Attributes are always public and can be accessed using dot (.) operator. Eg.:

Myclass.Myattribute

Class Definition Syntax:

class ClassName:

 # Statement-1
 .

 .
 .
 # Statement-N

Defining a class –

Python program to demonstrate defining a class

class Dog:

 pass

In the above example, class keyword indicates that you are creating a class followed

by the name of the class (Dog in this case).

Class Objects

An Object is an instance of a Class. A class is like a blueprint while an instance is

a copy of the class with actual values. It’s not an idea anymore, it’s an actual dog,

like a dog of breed pug who’s seven years old. You can have many dogs to create

many different instances, but without the class as a guide, you would be lost, not

knowing what information is required.

An object consists of:

• State: It is represented by attributes of an object. It also reflects the

properties of an object.

• Behavior: It is represented by methods of an object. It also reflects the

response of an object with other objects.

• Identity: It gives a unique name to an object and enables one object to

interact with other objects.

US01DBCA21 – Python Programming Unit-3

9 | P a g e

Declaring Objects (Also called instantiating a class)

When an object of a class is created, the class is said to be instantiated. All the

instances share the attributes and the behavior of the class. But the values of those

attributes, i.e. the state are unique for each object. A single class may have any

number of instances. For Example:

Declaring an object –

Python program to demonstrate instantiating a class

class Dog:

 attr1 = "mamal"

 attr2 = "dog"

 # A sample method

 def fun(self):

 print("I'm a", self.attr1)

 print("I'm a", self.attr2)

Driver code

Object instantiation

Rodger = Dog()

Accessing class attributes and method through objects

print(Rodger.attr1)

Rodger.fun()

Output:

mamal

I'm a mamal

I'm a dog

In the above example, an object is created which is basically a dog named Rodger.

This class only has two class attributes that tell us that Rodger is a dog and a

mammal.

US01DBCA21 – Python Programming Unit-3

10 | P a g e

The self

• Class methods must have an extra first parameter in method definition. We

do not give a value for this parameter when we call the method, Python

provides it.

• If we have a method which takes no arguments, then we still have to have

one argument.

• This is similar to this pointer in C++ and this reference in Java.

When we call a method of this object as myobject.method(arg1, arg2), this is

automatically converted by Python into MyClass.method(myobject, arg1, arg2) –

this is all the special self is about.

__init__ method

The __init__ method is similar to constructors in C++ and Java. Constructors are

used to initialize the object’s state. Like methods, a constructor also contains a

collection of statements (i.e. instructions) that are executed at the time of Object

creation. It is run as soon as an object of a class is instantiated. The method is

useful to do any initialization you want to do with your object.

A Sample class with init method

class Person:

 # init method or constructor

 def __init__(self, name):

 self.name = name

 # Sample Method

 def say_hi(self):

 print('Hello, my name is', self.name)

 p = Person('Nikhil')

p.say_hi()

Output:

Hello, my name is Nikhil

Constructor
Constructors are generally used for instantiating an object. The task of

constructors is to initialize (assign values) to the data members of the class when

an object of class is created. In Python the __init__() method is called the

constructor and is always called when an object is created.

Syntax of constructor declaration:

def __init__(self):

 # body of the constructor

Types of constructors:

• default constructor: The default constructor is simple constructor which

doesn’t accept any arguments. Its definition has only one argument which is

a reference to the instance being constructed.

US01DBCA21 – Python Programming Unit-3

11 | P a g e

• parameterized constructor: constructor with parameters is known as

parameterized constructor. The parameterized constructor take its first

argument as a reference to the instance being constructed known as self and

the rest of the arguments are provided by the programmer.

Example of default constructor:

class GeekforGeeks:

 # default constructor

 def __init__(self):

 self.geek = "GeekforGeeks"

 # a method for printing data members

 def print_Geek(self):

 print(self.geek)

creating object of the class

obj = GeekforGeeks()

calling the instance method using the object obj

obj.print_Geek()

Output:

 GeekforGeeks

Example of parameterized constructor:

class Addition:

 first = 0

 second = 0

 answer = 0

 # parameterized constructor

 def __init__(self, f, s):

 self.first = f

 self.second = s

 def display(self):

 print("First number = " + str(self.first))

 print("Second number = " + str(self.second))

 print("Addition of two numbers = " + str(self.answer))

 def calculate(self):

 self.answer = self.first + self.second

creating object of the class

this will invoke parameterized constructor

obj = Addition(1000, 2000)

perform Addition

obj.calculate()

display result

obj.display()

Output:

First number = 1000

Second number = 2000

Addition of two numbers = 3000

US01DBCA21 – Python Programming Unit-3

12 | P a g e

Destructor
Destructors are called when an object gets destroyed. In Python, destructors are

not needed as much needed in C++ because Python has a garbage collector that

handles memory management automatically.

The __del__() method is a known as a destructor method in Python. It is called when

all references to the object have been deleted i.e when an object is garbage collected.

Syntax of destructor declaration:

def __del__(self):

 # body of destructor

Example:

Python program to illustrate destructor

class Employee:

 # Initializing

 def __init__(self):

 print('Employee created.')

 # Deleting (Calling destructor)

 def __del__(self):

 print('Destructor called, Employee deleted.')

obj = Employee()

del obj

Output:

Employee created.

Destructor called, Employee deleted.

Inheritance
Inheritance is the capability of one class to derive or inherit the properties from

another class. The benefits of inheritance are:

1. It represents real-world relationships well.

2. It provides reusability of a code. We don’t have to write the same code again

and again. Also, it allows us to add more features to a class without modifying

it.

3. It is transitive in nature, which means that if class B inherits from another

class A, then all the subclasses of B would automatically inherit from class

A.

Different forms of Inheritance:

1. Single inheritance

2. Multiple inheritance

3. Multilevel inheritance

4. Hierarchical inheritance

5. Hybrid inheritance

US01DBCA21 – Python Programming Unit-3

13 | P a g e

Single Inheritance

Single inheritance enables a derived class to inherit properties from a single parent

class, thus enabling code reusability and the addition of new features to existing

code.

Example:

Python program to demonstrate

single inheritance

Base class

class Parent:

 def func1(self):

 print("This function is in parent class.")

Derived class

class Child(Parent):

 def func2(self):

 print("This function is in child class.")

Driver's code

object = Child()

object.func1()

object.func2()

Output:

This function is in parent class.

This function is in child class.

Multiple Inheritance

When a class can be derived from more than one base class this type of inheritance

is called multiple inheritance. In multiple inheritance, all the features of the base

classes are inherited into the derived class.

US01DBCA21 – Python Programming Unit-3

14 | P a g e

Example:

Python program to demonstrate

multiple inheritance

Base class1

class Mother:

 mothername = ""

 def mother(self):

 print(self.mothername)

Base class2

class Father:

 fathername = ""

 def father(self):

 print(self.fathername)

Derived class

class Son(Mother, Father):

 def parents(self):

 print("Father :", self.fathername)

 print("Mother :", self.mothername)

Driver's code

s1 = Son()

s1.fathername = "RAM"

s1.mothername = "SITA"

s1.parents()

Output:

Father : RAM

Mother : SITA

US01DBCA21 – Python Programming Unit-3

15 | P a g e

Multilevel Inheritance

In multilevel inheritance, features of the base class and the derived class are

further inherited into the new derived class. This is similar to a relationship

representing a child and grandfather.

Example:

Python program to demonstrate

multilevel inheritance

Base class

class Grandfather:

 def __init__(self, grandfathername):

 self.grandfathername = grandfathername

Intermediate class

class Father(Grandfather):

 def __init__(self, fathername, grandfathername):

 self.fathername = fathername

 # invoking constructor of Grandfather class

 Grandfather.__init__(self, grandfathername)

Derived class

class Son(Father):

 def __init__(self,sonname, fathername, grandfathername):

 self.sonname = sonname

 # invoking constructor of Father class

 Father.__init__(self, fathername, grandfathername)

 def print_name(self):

 print('Grandfather name :', self.grandfathername)

 print("Father name :", self.fathername)

 print("Son name :", self.sonname)

Driver code

s1 = Son('Prince', 'Rampal', 'Lal mani')

print(s1.grandfathername)

s1.print_name()

US01DBCA21 – Python Programming Unit-3

16 | P a g e

Output:

Lal mani

Grandfather name : Lal mani

Father name : Rampal

Son name : Prince

Hierarchical Inheritance

When more than one derived classes are created from a single base this type of

inheritance is called hierarchical inheritance. In this program, we have a parent

(base) class and two child (derived) classes.

Example:

Python program to demonstrate

Hierarchical inheritance

Base class

class Parent:

 def func1(self):

 print("This function is in parent class.")

Derived class1

class Child1(Parent):

 def func2(self):

 print("This function is in child 1.")

Derivied class2

class Child2(Parent):

 def func3(self):

 print("This function is in child 2.")

Driver's code

object1 = Child1()

object2 = Child2()

object1.func1()

object1.func2()

object2.func1()

object2.func3()

US01DBCA21 – Python Programming Unit-3

17 | P a g e

Output:

This function is in parent class.

This function is in child 1.

This function is in parent class.

This function is in child 2.

Hybrid Inheritance

Inheritance consisting of multiple types of inheritance is called hybrid inheritance.

Example:

Python program to demonstrate

hybrid inheritance

class School:

 def func1(self):

 print("This function is in school.")

class Student1(School):

 def func2(self):

 print("This function is in student 1. ")

class Student2(School):

 def func3(self):

 print("This function is in student 2.")

class Student3(Student1, School):

 def func4(self):

 print("This function is in student 3.")

Driver's code

object = Student3()

object.func1()

object.func2()

Output:

This function is in school.

This function is in student 1.

Method overloading and overriding
Polymorphism

The word polymorphism means having many forms. In programming,

polymorphism means same function name (but different signatures) being uses for

different types.

Method Overloading

Method Overloading is an example of Compile time polymorphism. In this, more

than one method of the same class shares the same method name having different

signatures. Method overloading is used to add more to the behavior of methods and

there is no need of more than one class for method overloading.

US01DBCA21 – Python Programming Unit-3

18 | P a g e

Example:

Function to take multiple arguments

def add(datatype, *args):

 # if datatype is int

 # initialize answer as 0

 if datatype =='int':

 answer = 0

 # if datatype is str

 # initialize answer as ''

 if datatype =='str':

 answer =''

 # Traverse through the arguments

 for x in args:

 # This will do addition if the

 # arguments are int. Or concatenation

 # if the arguments are str

 answer = answer + x

 print(answer)

Integer

add('int', 5, 6)

String

add('str', 'Hi ', 'Geeks')

Output:

11

Hi Geeks

Method Overriding

Method overriding is an example of run time polymorphism. In this, the specific

implementation of the method that is already provided by the parent class is

provided by the child class. It is used to change the behavior of existing methods

and there is a need for at least two classes for method overriding. In method

overriding, inheritance always required as it is done between parent

class(superclass) and child class (child class) methods.

Example

class A:

 def fun1(self):

 print('feature_1 of class A')

 def fun2(self):

 print('feature_2 of class A')

class B(A):

 # Modified function that is

 # already exist in class A

 def fun1(self):

 print('Modified feature_1 of class A by class B')

US01DBCA21 – Python Programming Unit-3

19 | P a g e

 def fun3(self):

 print('feature_3 of class B')

Create instance

obj = B()

Call the override function

obj.fun1()

Output:

Modified version of feature_1 of class A by class B

Difference between Method Overloading and Method Overriding in Python

S.NO METHOD OVERLOADING METHOD OVERRIDING

1.

In the method overloading,
methods or functions must have

the same name and different
signatures.

Whereas in the method overriding,
methods or functions must have

the same name and same
signatures.

2.
Method overloading is a example
of compile time polymorphism.

Whereas method overriding is a
example of run time

polymorphism.

3.
In the method overloading,
inheritance may or may not be

required.

Whereas in method overriding,
inheritance always required.

4.
Method overloading is performed

between methods within the class.

Whereas method overriding is done
between parent class and child
class methods.

5.
It is used in order to add more to

the behavior of methods.

Whereas it is used in order to
change the behavior of exist
methods.

6.
In method overloading, there is no
need of more than one class.

Whereas in method overriding,

there is need of at least of two
classes.

Python Modules
What is a Module?

Consider a module to be the same as a code library. A file containing a set of

functions you want to include in your application.

Create a Module

To create a module just save the code you want in a file with the file extension .py:

Example

Save this code in a file named mymodule.py

def greeting(name):

 print("Hello, " + name)

US01DBCA21 – Python Programming Unit-3

20 | P a g e

Use a Module

Now we can use the module we just created, by using the import statement:

Example

Import the module named mymodule, and call the greeting function:

import mymodule

mymodule.greeting("Jonathan")

Variables in Module

The module can contain functions, as already described, but also variables of all

types (arrays, dictionaries, objects etc):

Example

Save this code in the file mymodule.py

person1 = {

 "name": "John",

 "age": 36,

 "country": "Norway"

}

Import the module named mymodule, and access the person1 dictionary:

import mymodule

a = mymodule.person1["age"]

print(a)

Naming a Module

You can name the module file whatever you like, but it must have the file extension

.py

Re-naming a Module

You can create an alias when you import a module, by using the as keyword:

Example

Create an alias for mymodule called mx:

import mymodule as mx

a = mx.person1["age"]

print(a)

Built-in Modules

There are several built-in modules in Python, which you can import whenever you

like.

US01DBCA21 – Python Programming Unit-3

21 | P a g e

Example

Import and use the platform module:

import platform

x = platform.system()

print(x)

Using the dir() Function

There is a built-in function to list all the function names (or variable names) in a

module. The dir() function:

Example

List all the defined names belonging to the platform module:

import platform

x = dir(platform)

print(x)

Import From Module

You can choose to import only parts from a module, by using the from keyword.

Example

The module named mymodule has one function and one dictionary:

def greeting(name):

 print("Hello, " + name)

person1 = {

 "name": "John",

 "age": 36,

 "country": "Norway"

}

Import only the person1 dictionary from the module:

from mymodule import person1

print (person1["age"])

Python Lambda

A lambda function is a small anonymous function. A lambda function can take

any number of arguments, but can only have one expression.

Syntax

lambda arguments : expression

The expression is executed and the result is returned.

US01DBCA21 – Python Programming Unit-3

22 | P a g e

Example

Add 10 to argument a, and return the result:

x = lambda a : a + 10

print(x(5))

Lambda functions can take any number of arguments:

Example

Multiply argument a with argument b and return the result:

x = lambda a, b : a * b

print(x(5, 6))

Example

Summarize argument a, b, and c and return the result:

x = lambda a, b, c : a + b + c

print(x(5, 6, 2))

Why Use Lambda Functions?

The power of lambda is better shown when you use them as an anonymous

function inside another function. Say you have a function definition that takes one

argument, and that argument will be multiplied with an unknown number:

def myfunc(n):

 return lambda a : a * n

Use that function definition to make a function that always doubles the number

you send in.

Example

def myfunc(n):

 return lambda a : a * n

mydoubler = myfunc(2)

print(mydoubler(11))

Or, use the same function definition to make a function that always triples the

number you send in:

Example

def myfunc(n):

 return lambda a : a * n

mytripler = myfunc(3)

print(mytripler(11))

US01DBCA21 – Python Programming Unit-3

23 | P a g e

Error with its types
The most common reason of an error in a Python program is when a certain

statement is not in accordance with the prescribed usage. Such an error is called

a syntax error. The Python interpreter immediately reports it, usually along with

the reason.

Many times, though, a program results in an error after it is run even if it doesn't

have any syntax error. Such an error is a runtime error, called an exception. A

number of built-in exceptions are defined in the Python library. Let's see some

common error types.

IndexError is thrown when trying to access an item at an invalid index.

ModuleNotFoundError is thrown when a module could not be found.

KeyError is thrown when a key is not found.

ImportError is thrown when a specified function cannot be found.

US01DBCA21 – Python Programming Unit-3

24 | P a g e

StopIteration is thrown when the next() function goes beyond the iterator items.

TypeError is thrown when an operation or function is applied to an object of an

inappropriate type.

ValueError is thrown when a function's argument is of an inappropriate type.

NameError is thrown when an object could not be found.

ZeroDivisionError is thrown when the second operator in the division is zero.

US01DBCA21 – Python Programming Unit-3

25 | P a g e

KeyboardInterrupt is thrown when the user hits the interrupt key (normally

Control-C) during the execution of the program.

The following table lists important built-in exceptions in Python.

Exception Description
AssertionError Raised when the assert statement fails.

AttributeError Raised on the attribute assignment or reference fails.

EOFError Raised when the input() function hits the end-of-file condition.

FloatingPointError Raised when a floating point operation fails.

GeneratorExit Raised when a generator's close() method is called.

ImportError Raised when the imported module is not found.

IndexError Raised when the index of a sequence is out of range.

KeyError Raised when a key is not found in a dictionary.

KeyboardInterrupt Raised when the user hits the interrupt key (Ctrl+c or delete).

MemoryError Raised when an operation runs out of memory.

NameError Raised when a variable is not found in the local or global scope.

NotImplementedError Raised by abstract methods.

OSError Raised when a system operation causes a system-related error.

OverflowError Raised when the result of an arithmetic operation is too large to
be represented.

ReferenceError Raised when a weak reference proxy is used to access a garbage
collected referent.

RuntimeError Raised when an error does not fall under any other category.

StopIteration Raised by the next() function to indicate that there is no further
item to be returned by the iterator.

SyntaxError Raised by the parser when a syntax error is encountered.

IndentationError Raised when there is an incorrect indentation.

TabError Raised when the indentation consists of inconsistent tabs and
spaces.

SystemError Raised when the interpreter detects internal error.

SystemExit Raised by the sys.exit() function.

TypeError Raised when a function or operation is applied to an object of an
incorrect type.

UnboundLocalError Raised when a reference is made to a local variable in a function
or method, but no value has been bound to that variable.

UnicodeError Raised when a Unicode-related encoding or decoding error occurs.

UnicodeEncodeError Raised when a Unicode-related error occurs during encoding.

UnicodeDecodeError Raised when a Unicode-related error occurs during decoding.

UnicodeTranslateError Raised when a Unicode-related error occurs during translation.

ValueError Raised when a function gets an argument of correct type but
improper value.

ZeroDivisionError Raised when the second operand of a division or module operation
is zero.

US01DBCA21 – Python Programming Unit-3

26 | P a g e

Exception Handling

The cause of an exception is often external to the program itself. For example, an

incorrect input, a malfunctioning IO device etc. Because the program abruptly

terminates on encountering an exception, it may cause damage to system

resources, such as files. Hence, the exceptions should be properly handled so that

an abrupt termination of the program is prevented.

Python uses try and except keywords to handle exceptions. Both keywords are

followed by indented blocks.

Syntax:

try :

 #statements in try block

except :

 #executed when error in try block

The try: block contains one or more statements which are likely to encounter an

exception. If the statements in this block are executed without an exception, the

subsequent except: block is skipped.

If the exception does occur, the program flow is transferred to the except: block.

The statements in the except: block are meant to handle the cause of the exception

appropriately. For example, returning an appropriate error message.

You can mention a specific type of exception in front of the except keyword. The

subsequent block will be executed only if the specified exception occurs. There may

be multiple except clauses with different exception types in a single try block. If the

type of exception doesn't match any of the except blocks, it will remain unhandled

and the program will terminate.

The rest of the statements after the except block will continue to be executed,

regardless if the exception is encountered or not. The following example will throw

an exception when we try to divide an integer by a string.

Example: try...except blocks

try:

 a=5

 b='0'

 print(a/b)

except:

 print('Some error occurred.')

print("Out of try except blocks.")

Result:

Some error occurred.

Out of try except blocks.

US01DBCA21 – Python Programming Unit-3

27 | P a g e

You can mention a specific type of exception in front of the except keyword. The

subsequent block will be executed only if the specified exception occurs. There may

be multiple except clauses with different exception types in a single try block. If the

type of exception doesn't match any of the except blocks, it will remain unhandled

and the program will terminate.

Example:

try:

 a=5

 b='0'

 print (a+b)

except TypeError:

 print('Unsupported operation')

print ("Out of try except blocks")

Result:

Unsupported operation

Out of try except blocks

As mentioned above, a single try block may have multiple except blocks. The

following example uses two except blocks to process two different exception types:

try:

 a=5

 b=0

 print (a/b)

except TypeError:

 print('Unsupported operation')

except ZeroDivisionError:

 print ('Division by zero not allowed')

print ('Out of try except blocks')

Result:

Division by zero not allowed

Out of try except blocks

else and finally

In Python, keywords else and finally can also be used along with the try and except

clauses. While the except block is executed if the exception occurs inside the try

block, the else block gets processed if the try block is found to be exception free.

Syntax:

try:

 #statements in try block

except:

 #executed when error in try block

else:

 #executed if try block is error-free

finally:

 #executed irrespective of exception occurred or not

US01DBCA21 – Python Programming Unit-3

28 | P a g e

The finally block consists of statements which should be processed regardless of

an exception occurring in the try block or not. As a consequence, the error-free try

block skips the except clause and enters the finally block before going on to execute

the rest of the code. If, however, there's an exception in the try block, the

appropriate except block will be processed, and the statements in the finally block

will be processed before proceeding to the rest of the code.

The example below accepts two numbers from the user and performs their division.

It demonstrates the uses of else and finally blocks.

try:

 print("try block")

 x=int(input('Enter a number: '))

 y=int(input('Enter another number: '))

 z=x/y

except ZeroDivisionError:

 print("except ZeroDivisionError block")

 print("Division by 0 not accepted")

else:

 print("else block")

 print("Division = ", z)

finally:

 print("finally block")

 x=0

 y=0

print ("Out of try, except, else and finally blocks.")

Result:

The first run is a normal case. The out of the else and finally blocks is displayed

because the try block is error-free.

try block

Enter a number: 10

Enter another number: 2

else block

Division = 5.0

finally block

Out of try, except, else and finally blocks.

The second run is a case of division by zero, hence, the except block and the finally

block are executed, but the else block is not executed.

try block

Enter a number: 10

Enter another number: 0

except ZeroDivisionError block

Division by 0 not accepted

finally block

Out of try, except, else and finally blocks.

US01DBCA21 – Python Programming Unit-3

29 | P a g e

In the third run case, an uncaught exception occurs. The finally block is still

executed but the program terminates and does not execute the program after the

finally block.

try block

Enter a number: 10

Enter another number: xyz

finally block

Traceback (most recent call last):

 File "C:\python36\codes\test.py", line 3, in <module>

 y=int(input('Enter another number: '))

ValueError: invalid literal for int() with base 10: 'xyz'

Raise an Exception
Python also provides the raise keyword to be used in the context of exception

handling. It causes an exception to be generated explicitly. Built-in errors are

raised implicitly. However, a built-in or custom exception can be forced during

execution.

The following code accepts a number from the user. The try block raises a

ValueError exception if the number is outside the allowed range.

Example: Raise an Exception

try:

 x=int(input('Enter a number upto 100: '))

 if x > 100:

 raise ValueError(x)

except ValueError:

 print(x, "is out of allowed range")

else:

 print(x, "is within the allowed range")

Result:

Enter a number upto 100: 200

200 is out of allowed range

Enter a number upto 100: 50

50 is within the allowed range

US01DBCA21 – Python Programming Unit-3

30 | P a g e

User Defined Exception

Creating User-defined Exception

Programmers may name their own exceptions by creating a new exception class.

Exceptions need to be derived from the Exception class, either directly or indirectly.

Although not mandatory, most of the exceptions are named as names that end in

“Error” similar to naming of the standard exceptions in python. For example:

A python program to create user-defined exception

class MyError is derived from super class Exception

class MyError(Exception):

 # Constructor or Initializer

 def __init__(self, value):

 self.value = value

 # __str__ is to print() the value

 def __str__(self):

 return(repr(self.value))

try:

 raise(MyError(3*2))

Value of Exception is stored in error

except MyError as error:

 print('A New Exception occured: ',error.value)

Output:

('A New Exception occured: ', 6)

Page No.: 1

US06DBCA21 : Python Programming

Unit - 4

File Handling

File handling is an important part of any web application. Python has several

functions for creating, reading, updating, and deleting files.

open() function

The built-in open() function is used to open the file.

Syntax

open(“filename”, “mode”)

The open() function takes two parameters; filename, and mode.

Filename – Name of the file.

Mode- There are four different methods (modes) for opening a file:

"r" - Read - Default value. Opens a file for reading, error if the file does not exist

"a" - Append - Opens a file for appending, creates the file if it does not exist

"w" - Write - Opens a file for writing, creates the file if it does not exist

"x" - Create - Creates the specified file, returns an error if the file exists

In addition you can specify if the file should be handled as binary or text mode

"t" - Text - Default value. Text mode

"b" - Binary - Binary mode (e.g. images)

Example:

To open a file for reading it is written as :

f = open("add.txt")

The code above is the same as:

Page No.: 2

f = open("add.txt", "rt")

Because "r" for read, and "t" for text are the default values, you do not need to

specify them.

read() method

The open() function returns a file object, which has a read() method for reading

the content of the file:

Example:

 Consider, the file “add.txt” with following data.

 Sardar Patel University,

 V V Nagar.

Python Code:

f = open("add.txt", "r")

print(f.read())

Output: It display the contents of file “add.txt” on the screen.

 Sardar Patel University,

 V V Nagar.

If the file is located in a different location, you will have to specify the file path,

like this:

Example

Open a file on a different location:

f = open("D:\\myfiles\add.txt", "r")

print(f.read())

Output: It display the contents of file “add.txt” on the screen.

 Sardar Patel University,

 V V Nagar.

Page No.: 3

Read Only Parts of the File

By default the read() method returns the whole text, but you can also specify

how many characters you want to return:

Example

Return the 6 first characters of the file:

f = open("add.txt", "r")

print(f.read(6))

Output:

 Sardar

Read Line method

You can return one line by using the readline() method:

Example

Read one line of the file:

f = open("add.txt", "r")

print(f.readline())

Output:

 Sardar Patel University,

By calling readline() two times, you can read the two first lines:

Example

Read two lines of the file:

f = open("add.txt", "r")

print(f.readline())

print(f.readline())

Output:

 Sardar Patel University,

Page No.: 4

 V V Nagar.

By looping through the lines of the file, you can read the whole file, line by line:

Example

Loop through the file line by line:

f = open("add.txt", "r")

for x in f:

 print(x, end=””)

Output:

 Sardar Patel University,

 V V Nagar.

Read Lines method

It returns a list of lines from the file.

The readlines() method returns a list containing each line in the file as a list

item.

Example

f = open("add.txt", "r")

print(f.readlines())

Output:

 [‘Sardar Patel University\n’,’V V Nagar.’]

Close Files

The built-in close() function is used to close the file.

It is a good practice to always close the file when you are done with it.

Example

Close the file when you are finish with it:

Page No.: 5

f = open("add.txt", "r")

print(f.readline())

f.close()

Write method

To write the contents to a file, you must add a parameter to the open() function:

"a" - Append - will append to the end of the file

"w" - Write - will overwrite any existing content

Example on append mode:

Open the file "add.txt" and append content to the file:

f = open("add.txt", "a")

f.write("\nI am new line")

f.close()

#open and read the file after the appending:

f = open("add.txt", "r")

print(f.read())

Output: It display the contents of file “add.txt” on the screen.

 Sardar Patel University,

 V V Nagar.

 I am new line

Example on write mode

Open the file "add.txt" and overwrite the content:

f = open("add.txt", "w")

f.write("I have deleted the content!")

f.close()

#open and read the file after the appending:

Page No.: 6

f = open("add.txt", "r")

print(f.read())

Output: It display the contents of file “add.txt” on the screen.

I have deleted the content

Create a New File

To create a new file in Python, use the open() method, with one of the following

parameters:

"x" - Create - will create a file, returns an error if the file exist

"a" - Append - will create a file if the specified file does not exist

"w" - Write - will create a file if the specified file does not exist

Example

Create a file called "myfile.txt":

f = open("myfile.txt", "x")

Result: a new empty file is created!

Example

Create a new file if it does not exist:

f = open("myfile.txt", "w")

Delete a File

To delete a file, you must import the OS module, and run its os.remove()

function:

Example

Remove the file "test.txt":

import os

os.remove("test.txt")

Page No.: 7

Check if File exist:

To avoid getting an error, you might want to check if the file exists before you try

to delete it:

Example

Check if file exists, then delete it:

import os

if os.path.exists("test.txt"):

 os.remove("test.txt")

 print(“File deleted.”)

else:

 print("The file does not exist")

Database Connectivity

Python can be used in database applications. One of the most popular

databases is MySQL.

Create Connection

To create a connection to the MySql database, we have to import

mysql.connector.

The connect method of mysql.connector will help to create a connection to

database.

The syntax to use the connect() is given below.

connection_object= mysql.connector.connect(host = <hostname> ,

user = <username> ,

password = <password>)

Page No.: 8

Pass the details like hostname, username and password for creating a

connection.

Example

Python code:

Database Connectivity to mysql

import mysql.connector as m

conn=m.connect(

 host='localhost',

 user='root',

 password=''

)

if conn.is_connected():

 print("Connection Success...")

Output: Connection Success...if everything is ok.

Creating a cursor object:

We can create the cursor object by calling the 'cursor' function of the

connection object.

The syntax to create the cursor object is given below.

<my_cur> = conn.cursor()

Example

Python code:

import mysql.connector as m

conn=m.connect(

 host='localhost',

 user='root',

 password=''

)

cur = conn.cursor()

Page No.: 9

Creating a Database

The new database can be created by using the following MYSQL query.

 create database <database_name>

We can get the list of all the databases by using the following MySQL query.

 show databases

Example

Python code:

import mysql.connector as m

conn=m.connect(host='localhost',user='root',password='')

cur = conn.cursor()

cur.execute(“create database spu “)

cur.execute(“show databases “)

data=cur.fetchall()

for x in data:

 print(data)

conn.close()

Output: (spu,)

Note: Names of other database, if any, also display here in

the form of tuple.

Creating a Table

We can create the new table by using the CREATE TABLE statement of MYSQL.

In our database ‘spu’, the table ‘stud’ will have the three columns, i.e., sno,

sname and sgender.

The following query is used to create the new table ‘stud’.

Example

Python code: import mysql.connector as m

conn=m.connect(host='localhost',user='root',password='',

Page No.: 10

 database=’spu’)

cur = conn.cursor()

q=”create table stud (

 sno int(3) primary key ,

 sname varchar(20),

 sgender varchar(10)

)”

cur.execute(q)

conn.close()

If the above code was executed with no errors, you have now successfully

created a table.

Insert operation:

Adding a single record to a table:

The INSERT INTO statement is used to add a record to the table. In python, we

can mention the format specifier (%s) in place of values.

We provide the actual values in the form of tuple in the execute() method of the

cursor.

Example

Python code:

import mysql.connector as m

conn=m.connect(host='localhost',user='root',password='',

 database=’spu’)

cur = conn.cursor()

q=”insert into stud values(%s,%s,%s)”

d=(1,’Mohit’,’Male’)

cur.execute(q,d)

conn.commit()

print(cur.rowcount, “ record inserted.”)

conn.close()

Output: 1 record inserted.

Page No.: 11

Adding multiple records to a table:

The INSERT INTO statement is used to more than one record to the table. In

python, we can mention the format specifier (%s) in place of values.

We provide the actual values in the form of tuple in the execute() method of the

cursor.

Example

Python code:

import mysql.connector as m

conn=m.connect(host='localhost',user='root',password='',

 database=’spu’)

cur = conn.cursor()

q=”insert into stud values(%s,%s,%s)”

d=[(2,’Rohit’,’Male’), (3,’Anu’,’Female’), (4,’kinjal’,’Female’)]

cur.execute(q,d)

conn.commit()

print(cur.rowcount, “ records inserted.”)

conn.close()

Output: 3 records inserted.

Read Operation:

The SELECT statement is used to read the values from the databases. We can

restrict the output of a select query by using various clause like where, limit,

etc.

Python provides the three fetch method that data stored inside the table.

1. fetchone()

2. fetchmany()

3. fetchall()

The fetchone() method:

The fetchone() method is used to fetch only one row from the dataset.

Page No.: 12

Consider the following example.

Example:

Python code:

import mysql.connector as m

conn=m.connect(host='localhost',user='root',password='',

 database=’spu’)

cur = conn.cursor()

q=”select * from stud”

cur.execute(q)

data=cur.fetchone()

print(data)

conn.close()

Output: (1,’Mohit’,’Male’)

The fetchall() method:

The fetchall() method is used to fetch all rows from the dataset.

Example:

Python code:

import mysql.connector as m

conn=m.connect(host='localhost',user='root',password='',

 database=’spu’)

cur = conn.cursor()

q=”select * from stud”

cur.execute(q)

data=cur.fetchall()

for x in data:

 print(x)

conn.close()

Output: (1,’Mohit’,’Male’)

(2,’Rohit’,’Male’)

(3,’Anu’,’Female’)

(4,’Kinjal’,’Female’)

Page No.: 13

The fetchmany() method:

The fetchmany(n) method is used to fetch ‘n’ number of rows from the dataset.

If an argument (n) is missing then it will fetch only one row from the dataset.

Example:

Python code:

import mysql.connector as m

conn=m.connect(host='localhost',user='root',password='',

 database=’spu’)

cur = conn.cursor()

q=”select * from stud”

cur.execute(q)

data=cur.fetchmany(2)

for x in data:

 print(x)

conn.close()

Output: (1,’Mohit’,’Male’)

(2,’Rohit’,’Male’)

Update operation:

The UPDATE-SET statement is used to update any column inside the table. The

following SQL query is used to update a column.

Update stud set sname=’Harshit’ where sno=2

This will change the name of student from ‘Rohit’ to ‘Harshit’ whose number is

2.

Example:

Python code:

import mysql.connector as m

conn=m.connect(host='localhost',user='root',password='',

 database=’spu’)

cur = conn.cursor()

Page No.: 14

q=” update stud set sname=’Harshit’ where sno=2”

cur.execute(q)

conn.commit()

print(cur.rowcount, “ record updated.”)

conn.close()

Output: 1 record updated.

Delete operation:

The DELETE FROM statement is used to delete a specific record from the table.

Don’t forget to write WHERE clause otherwise all the records from the table will

be removed.

Example:

Python code:

import mysql.connector as m

conn=m.connect(host='localhost',user='root',password='',

 database=’spu’)

cur = conn.cursor()

q=” delete from stud”

cur.execute(q)

conn.commit()

print(cur.rowcount, “ records deleted.”)

conn.close()

Output: 4 records deleted.

Close a database connection:

The close() method of the connection is used to disconnect the database

connection.

To close a database connection we can use close() method.

Page No.: 15

Example:

Python code:

import mysql.connector as m

conn=m.connect(host='localhost',user='root',password='')

cur = conn.cursor()

 :

 :

 :

conn.close()

- - - - - X - - - - -

	Unit1_Python.pdf
	Unit2_Final.pdf
	Python Unit 3.pdf
	UNIT4_Final.pdf

