
US06CCSC01 Unit - I
OOP using Java

Unit-I - Java History, Features, comparision with C & C++

- Java and Internet, www, Java Environment

- Java Program Structure and Simple Program

- Implementing a Java Program , JVM

- Java Tokens and Comments

- Constants, Variables, Data types, Declaration of Variables,

Giving values to Variables

- Scope of Variables, Type Casting

- Getting Values of Variables, Default Variables

- Operators: Arithmetic, Relational, Logical,

Assignment, Increment/Decrement, Conditional &

Special operators

Java History

Java is a general-purpose, object-oriented programming language developed by Sun

Microsystems of USA in 1991. Originally called Oak by James Gosling. One of the inventors of

the language, Java was designed for the development of software for consumer electronic

devices like TVs, VCRs, toasters and such other electronic machines. Below lists some important

milestones in the development of Java.

Year Development
1990 Sun Microsystems decided to develop special software that could be used

manipulate consumer electronic devices. A team of Sun Microsystems

programmers headed by James Gosling was formed to undertake this

task.
1991 After exploring the possibility of using the most popular object-oriented

language C++, the team announced a new language named “Oak”.
1992 The team, known as Green Project team by Sun, demonstrated the

application of their new language to control a list of home appliances

using a hand-held device with a tiny touch0sensitive screen.
1993 The World Wide Web(WWW) appeared on the Internet and transformed

Page 1 of 69

US06CCSC01 Unit - I
OOP using Java

the text-based Internet into a graphical-rich environment. The Green

Project team came up with the idea of developing Web applets (tiny

programs) using the new language that could run on all types of

computers connected to Internet.
1994 The team developed a Web browser called “Hot Java” to locate and run

applet programs on Internet. Hot Java demonstrated the power of the new

language, thus making it instantly popular among the Internet users.
1995 Oak was renamed “Java”, due to some legal snags. Java is just a name

and is not an acronym. Many popular companies including Netscape and

Microsoft announced their support to Java.
1996 Java established itself not only as a leader for Internet programming but

also as a general-purpose, object oriented programming language. Sun

releases Java Development Kit 1.0.
1997 Sun releases Java Development Kit 1.1 (JDK 1.1)
1998 Sun releases the Java 2 with version 1.2 of the Software Development Kit

(SDK 1.2)
1999 Sun releases the Java 2 Platform, Standard Edition (J2SE) and Enterprise

Edition (J2EE)
2000 J2SE with SDK 1.3 was released.
2002 J2SE with SDK 1.4 was released.
2004 J2SE with SDK 5.0(instead of JDK 1.5) was released. This is known as

J2SE 5.0

Page 2 of 69

US06CCSC01 Unit - I
OOP using Java

Features of Java

1. Compiled and Interpreted

Usually computer language is either compiled or interpreted while java combines both

approach thus it make two-stage system. Java compiler translates source code into byte

code instruction. Byte code is not machine instruction i.e., therefore the second stage java

interpreter generate machine code that can be executed by machine .i.e running language.

2. Platform-Independent and Portable

The most significant contribution of java is its portability. Java program easily moved one

computer system to another anywhere and any time. Change & upgrade in OS processors

and system resources will not force any change in java program. So java popular an

Internet which interconnect different types of systems worldwide. We can download java

applets from remote computer on to our local computer via Internet and execute it locally.

Java ensures portability by two ways: (1) Java compiler generates byte code instruction

that can be implemented on any machine. (2) The sizes of primitive data types are

machine dependents.

3. Object Oriented

Java is a true object-oriented language. Almost everything in java is in object. All

program code and data reside within objects and classes. Java comes with an extensive

set of classes, arranged in packages, that we can use in our programs by inheritance. The

object model in java is simple and easy to control.

4. Robust and secured

Java is a robust language. It provides many safeguards to ensure reliable code. It has

strict compile time and run time checking for data types. It is designed as garbage-

collected language relieving the programmers virtually all memory management

problems. Java also incorporates concepts of exception handling, which ensures series of

error and eliminates any risk of crashing the system.

Security becomes an important issue for language that is used for programming on

Internet. Java system not only verifies all memory access but also ensures no viruses are

communicated with an applet. The absence of pointer in java ensure that program can not

gain access to memory location without proper authorization.

Page 3 of 69

US06CCSC01 Unit - I
OOP using Java

5. Distributed

Java is designed as distributed language for creating applications on networks. It has the

ability to share both data and program. Java applications can open and access remote

object on Internet as easily as they can do in a local system. This enables multiple

programmers at multiple remote locations to collaborate and work together on a single

project.

6. Simple, Small and Familiar

Java is a small and simple language. Many feature of c & C++ that are either redundant

or sources of unreliable code are not part of java. E.g. java does not use pointer,

preprocessor header files, goto statement and many others. It also eliminates operator

overloading and multiple inheritance.

7. Multithreaded and Interactive

Multithread means handling multiple tasks simultaneously. Java supports multithreaded

programs. We need not wait for application to finish one task before beginning another.

For example, we can listen to an audio clip, while scrolling a page and at the same time

download an applet from distant computer. This feature greatly improves the interactive

performance of graphical applications.

8. High performance

Java performance is impressive due to use intermediate byte code. Java speeds

comparable to the native of c & c++ .of dynamically linking new class. Java architecture

is also designed to reduce overheads during runtime. Further, the incorporation

multithreading enhances the over all execution speed of java programs.

9. Dynamic and Extensible

Java is dynamic language, capable of dynamically linking new class libraries, methods

and objects. Java can also determine the type of class through a query, making it possible

to either dynamically link or abort the program, depending on the response. Java program

support functions written in other languages such as c & c++. These functions are known

as native methods. This facility enables to programmers to use the efficient function

available in these languages. Native methods are linked dynamically at runtime.

Page 4 of 69

US06CCSC01 Unit - I
OOP using Java

Java Environment

Java Environment includes a large number of development tools and hundreds of classes and

methods. The development tools are part of the system known as Java Development kit (JDK)

and the classes and methods are part of the Java Standard Library(JSL), also known as the

Application Programming Interface(API).

1. Java Development Kit

The Java Development Kit comes with a collection of tools that are used for developing

and running Java Programs. They include:

a. appletviewer(for viewing Java Applets) : Enables us to run Java applets(without

actually using a Java-compatible browser).

b. javac(Java Compiler) : The Java comiler, which translates Java sourcecode to

bytecode files that the interpreter can understand.

c. java(Java Interpreter) : Java interpreter, which runs applets and applications by

reading and interpreting bytecode files.

d. javadoc : Creates HTML format documentation from Java source code files.

e. javah : Produces header files for use with native methods.

f. javap : Java disassemble, which helps us to find errors in our programs.

The way these tools are applied to build and run application programs is illustrated in

below figure. To create a Java program, we need to create a source code file using a text

editor. The source code is then compiled using the Java compiler javac and executed using

the Java interpreter java. The Java debugger jdb is used to find errors, if any, in the source

code. A compiled Java program can be converted into a source code with the help of Java

disassemble javap. We learn more about these tools as we work through the book.

Page 5 of 69

US06CCSC01 Unit - I
OOP using Java

Process of Building and running Java application programs

2. Application Programming Interface

The Java Standard Library (or API) includes hundreds of classes and methods grouped

into several functional packages. Most commonly used packages are:

Language Support Package: A collection of classes and methods required for

implementing basic features of java.

Utilities Package: A collection of classes to provide utility functions such as date and

time functions.

Input/Output Package : A collection of classes required for input/output manipulation.

Networking Package: A collection of classes for communicating with order computers

via Internet.

Page 6 of 69

Java
Program
Output

Text Editor

javac

java

javadoc

javah

jdb

Java
Source
Code

Java
Class
File

HTML
Files

Header
Files

US06CCSC01 Unit - I
OOP using Java

AWT package : The Abstract Window Tool Kit package contains classes that implements

platform-independent graphical user interface.

Applet Package : This includes a set of classes that allows us to create Java applets.

Java program structure

Documentation Section Suggested
Package statement Optional
Import statement Optional
Interface statement Optional
Class definition Optional
Main Method Class

{

 main method definition.

}

Essential

Documentation Section: This section comprises a set of comment lines giving the name of

the program, the author and other details, which the programmer would like to refer to at a

later stage. Comments must explain why and what of classes and how of algorithms. This

would greatly help in maintaining the program. Java also use a third style of comment /**

…….*/ known as documentation comment. This form of comment is used for generating

documentation automatically.

Package Statements: The first statement allowed in a java file a package statement. this

statement declares a package name and informs the compiler that classes defined here belong

to this package. E.g: package student; The package statement is optional.

Import Statements: The next statement after package statement (but before any class

definition) may be number of import statements. This is similar to #include statement in c.

Example: import student.test;

This statement instructs the interpreter to load the test class contained in the package student. Using

import statements, we can access to classes that are part of other named packages.

Page 7 of 69

US06CCSC01 Unit - I
OOP using Java

Interface Statements: An interface is like a class but includes group of method declarations.

This is also an optional section and used only when we wish to implement the multiple

inheritance features in a program. Interface is a new concept in java.

Class Definition: A java program may contain multiple class definition. Classes are primary and

essential elements of java program. These classes are used to map the objects of real-world

problems. The number of classes used depends on the complexity of the problem.

Main Method Class: Since every java stand-alone program requires main method as it’s starting

point, this class is the essential part of java program. A simple java program may contain only

this part. The main method creates objects of various classes and establishes communications

between them. On reaching end of main, the program terminates and the control passes back to

the operating system.

Simple Java Program

The best way to learn a new language is to write a few simple example programs and execute

them. We begin with a very simple program that prints a line of text as output.

Class SampleOne

{

 public static void main(String args[])

 {

 System.out.println(“Java is better than C++”);

 }

}

Let us discuss the program line by line and understand the unique features that constitute a Java

program.

Class Declaration

The first line

class SampleOne

Page 8 of 69

US06CCSC01 Unit - I
OOP using Java

declares a class, which is an object oriented construct. Java is a true object oriented language and

therefore, everything must be placed inside a class. class is a keyword and declare that a new

class definition follows, SampleOne is a java identifier that specifies the name of the class to be

defined.

Page 9 of 69

US06CCSC01 Unit - I
OOP using Java

Opening Brace

Every class definition in Java begins with am opening brace “{“ and ends with a matching

closing brace “}”, appearing in the last line in the example. This is similar to C++ class

construct.

The Main Line

The third line

public static void main(String args[])

defines a method name mai. Conceptually, this is similar to the main() function in C and C++.

Every java application program must include the main() method. This is the starting point for the

interpreter to begin the execution of the program. A java application can have any number of

classes but only one of them must include a main method to initiate the execution.

This line contains a number of keywords, public, static and void.

public: The keyword public is an access specifier that declares the main method as unprotected

and therefore making it accessible to all other classes. This is similar to the C++ public

modifier.

static: Next appears the keyword static, which declares this method as one that belongs to the

entire class and not a part of any objects of the class. The main must always be declare as

a static since the interpreter uses this method before any objects are created.

void: The type modifier void states that the main method does not return any value (but simply

prints some text to the screen)

Output Line

The only executable statement in the program is

System.out.println(“Java is better than C++”);

This is similar to the printf statement of C or cout<< construct of C++. Since java is a true object

oriented language, every method must be part of an object. The println method is a member of

the out object which is a static data member of System class. This line prints the string

Java is better than C++ to the screen. The method println always appends a newline character to

the end of the string.This means that any subsequent output will start on a new line.

Page 10 of 69

US06CCSC01 Unit - I
OOP using Java

Implementing a Java Program

Implementation of a Java application program involved a series of steps they include :

 Creating the program

 Compiling the program

 Running the Program

Remember that, before we begin creating the program, the java development kit(jdk) must be

properly installed in your system.

Creating the program

We can create a program using any text editor assume that we have entered the following

program:

Class Test

{

public static void main(String args[])

{

System.out.println(“Hellow!”);

System.out.println(“Welcome to the world of java”);

System.out.println(“Let us learn java”);

}

}

We must save this program in a file called Test.java ensuring that the file name content the class

name properly. This file is called the source file. Note that all java source file will have the

extension java. Note also that if a program contain multiple classes, the file name must be the

class name of the class containing the main method.

Compiling the Program

To compile the program, we must run the java compiler javac, with the name of the source file

on the command line as shown below:

javac Test.java

Page 11 of 69

US06CCSC01 Unit - I
OOP using Java

If everything is ok, the javac compiler creates a file called Test.class containing the bytecode of

the program. Note that the compiler will automatically names the bytecode as

<class name> .class

Implementation of Java Programs

Running Program

We need to use the java interpreter to run a stand-alone program. At the command prompt, type

java Test

now, the interpreter looks for the main method in the program and begins execution from there.

When executed, all program displays the following:

Hellow!

Welcome to the world of java

Let us learn java

Note that we simply type “Test” at the command line and not “Test.class” or “Test.java”.

Page 12 of 69

Souce Code

Java Compiler

Bytecode

Windows
Interpreter

Machine
Code

Window
Computer

ABC
Interpreter

Machine
Code

ABC
Computer

Macintosh
Interpreter

Machine
Code

Macintosh
Computer

US06CCSC01 Unit - I
OOP using Java

Machine Neutral

The compiler converts the source code files into bytecode files. These codes are machine-

independent and therefore can be run on any machine. This is a program complied on an IBM

machine will run on a Macintosh machine.

Java interpreter reads the bytecode files and translates them into machine code for the

specific machine on which the java program is running. The interpreter is therefore specially

written for each type of machine.

Java Virtual Machine(JVM)

All language compilers translates source code into machine code for a specific computer. Java

compiler also does the same thing. Then, how does java achieved architecture neutrality? The

answer is that the java compiler produces an intermedia code known as bytecode for a machine

that does not exist. The machine is called the Java Virtual Machine and it exist only inside the

computer memory. It is a simulated computer within the computer and does all major functions

of a real computer. Below figure illustrate the process of compiling a java program into bytecode

which is also referred to as virtual machine code.

The virtual machine code is not machine specific. The machine specific code(known as a

machine code) is generated by the java interpreter by acting as an intermediary between the

virtual machine and the real machine as shown in below figure. Remember that the interpreter is

different for different machine.

 Real Machine

Bewlow figure illustrate how java works on a typical computer. The Java object framework (Java

API) acts as the intermediary between the user program and the virtual machine which in turn

acts as the intermediary between the operating system and the java object framework.

Page 13 of 69

Java
Program

Java
Compiler

Virtual
Machine

Byte code Java Interpreter Machine Code

US06CCSC01 Unit - I
OOP using Java

Java Tokens

A Java program is basically a collection of classes. A class is defined by a set of declaration

statements and methods containing executable statements. Most statements contain expressions,

which describe the actions carried out on data. Smallest individual units in a program are known

as tokens. The compiler recognizes them for building up expressions and statements.

In simple terms, a Java program is a collection of tokens, comments and white spaces. Java

language includes five types of tokens. They are:

 Reserved Keywords
 Identifiers

Page 14 of 69

Operating System

Java Virtual Machine

Java Object Framework (API)

Compiler

User Application Program

Interpreter

Real Machine

User

US06CCSC01 Unit - I
OOP using Java

 Literals
 Operators
 Separators

Java Character Set
The smallest units of Java language are the characters used to write Java tokens. These characters

are defined by the Unicode character set, an emerging standard that tries to create characters for a

large number of scripts worldwide.

The Unicode is a l6-bit character coding system and currently supports more than 34,000 defined

Characters derived from 24 languages from America, Europe, Middle East, Africa and Asia

(including India).

Keywords

Keywords are an essential part of a language definition. They implement specific features of the

language. Java language has reserved 50 words as keywords.

Page 15 of 69

US06CCSC01 Unit - I
OOP using Java

The keywords, combined with operators and separators according to a syntax, form definition of

the java language. Understanding the meanings of all these words is important for Java

programmers.

Since keywords have_specific meaning in Java, we cannot use them as names for variables,

classes, methods and so on. All keywords are to be written in lower-case letters. Since Java is

case-sensitive, one can use these words as identifiers by changing one or more letters to

uppercase. However, it is bad practice and should be avoided.

Identifier

Identifiers are programmer-designed tokens. They are used for naming classes, methods,

variables, objects, labels, packages and interfaces in a program. Java identifier follow the

following rules:

1. They can have alphabets, digits, and the underscore and dollar sign characters.

2. They must not begin with digit.

3. Uppercase and lowercase letters are distinct.

4. They can be of any length.

Page 16 of 69

US06CCSC01 Unit - I
OOP using Java

Identifier must be meaningful, short enough to be quickly and easily typed and long enough to be

descriptive and easily read. Java developers have followed some naming conventions.

 Names of all public methods and instance variables start with a leading lowercase letter.

Examples: average, sum

 when more than one words are used in a name, the second and subsequent words are

marked with a leading uppercase letters, Examples:

dayTemperature, firstDayOfMonth, totalMarks

 All private and local variables use only lowercase letters combined with underscores.

Examples:

length, batch_strength

 All classes and interfaces start with a leading uppercase letter (and each subsequent word
with a leading uppercase lener). Examples:
Student
HelloJava
Vehicle
MotorCyc1e

 Variables that represent constant values use all uppercase letters and underscores between
words. Examples:
TOTAL
F_MAX
PRINCIPAL_AMOUNT

They are like symbolic constants in C.

It should be remembered that all these are conventions and not rules. we may follow our own

conventions as long as we do not break the basic rule of naming identifiers.

Literals

Literals in Java are a sequence of characters (digits, letters, and other characters) that represent
constant values to be stored in variables, Java language specifies five major types of literals.

They are:
 Integer literals
 Floatingjoint literals
 Character literals

Page 17 of 69

US06CCSC01 Unit - I
OOP using Java

 String literals
 Boolean literals

Each of them has a type associated with it. The type describes how the values behave and how
they are stored. We will discuss these in detail when we deal with data types and constants later.
Operators

An operator is a symbol that takes one or more arguments and operates on them to produce a

result. Operators are of many types.

Separators

Separators are symbols used to indicate where groups of code are divided and arranged. They

basically define the shape and function of our code. Below table lists separator and their

functions.

Parentheses () – Used to enclose parameters in method definition and invocation, also used for
definition precedence in expressions, containing expressions for flow control,
and surrounding cast types.

Braces {} - Used to contain the values of automatically initialized arrays and to define a
 block of code for classes, methods and local scopes.

Brackets [] - Used to declare array types and for dereferencing array values.

Semicolon ; - Used to separate statements

Comma , - Used to separate consecutive identifiers in variable declaration, also used to
 chain statements together inside a ‘for’ statement.

Period . - Used to separate package names from sub-packages and classes; also used to
 separate a variable or method from a reference variable.

Constants

Java constants

Numeric constant Character constant

Integer constant Real constant Character String Backslash character constant

Page 18 of 69

US06CCSC01 Unit - I
OOP using Java

 Constant constant

 Constants in java refer to fixed value that do not change during the execution of a

program. Java supports several types of constants as illustrated in fig.

Integer Constants

 An integer constant refer to a sequence of digits. There are three types of integers,

namely, decimal integer, octal integer and hexadecimal integer.

 Decimal integer consist of a set of digits, 0 through 9,preceded by an optional minus

sign, Valid example of decimal integer constants are:

 123 -321 0 654321

Embedded space, commas , and non digit character are not permitted between digits: For

example,

 15 750 20.000 $1000

Are illegal Numbers.

 An octal integer constant consists of any combination of digit from set 0 through 7,

with a leading 0. Some example of octal integer are:

 037 0 0435 0551

 A sequence of digit preceded by 0x or 0X is considered as hexadecimal integer(her

integer). They may also include alphabets A through F or a through f . A letter A through F

represents the number 10 through 15. Following are the example of valid hex integers.

 0X2 0X9F 0xbcd 0x

 We rarely use octal and hexadecimal number in programming.

Real Constants

 Integer number are inadequate to represent quantities that vary continuously, such

as distances, heights, temperatures, prices, and so on. These quantities are represented by

numbers containing fractional parts like 17.548. such number are called real(or floating

point)constants. Further example of real constants are

Page 19 of 69

US06CCSC01 Unit - I
OOP using Java

 0.0083 -0.75 435.36

These number are shown in decimal notation, having a whole number followed by a decimal

point and the fractional part, which is an integer. It is possible that the number may not have

digits before the decimal point or digits after the decimal point. That is,

 215. .95 -.71

Are all valid real numbers.

 A real number may also be expressed in exponential (or scientific)notation. For

example, the value 215.65 may be written as 2.1565e2 in exponential notation.e2 means

multiply by 102. .The general form is :

 mantissa e exponent

 The mantissa is either a real number expressed in decimal notation or integer. The exponent is

an integer with an optional plus or minus sign. The letter e separating the mantissa and the

exponent can be written in either lowercase or uppercase. Since the exponent causes the decimal

point to “float”, this notation is said to represent a real number in floating point form. Example

of legal floating point constants are:

 0.65e4 12e-2 1.5e+5 3.18E3 -1.2E-1

Embedded while (blank) space is not allowed, in any numeric constant.

 Exponential notation is useful for representing number that are either very large or

very small in magnitude. For example , 7500000000 may be written as 7.5E9 or 75E8.

Similarly , -0.000000368 is Equivalent to -3.68E-7.

A floating point constant may thus comprise four parts:

 A whole number
 A decimal point
 A fractional part
 An exponent

Single Character Constants

 A single character constants(or simply character constant) contains a single

character enclosed within a pair of quote marks. Example of character constants are:

 ‘5’ ‘X’ ‘:’ ‘ ‘

Note that the character constants ‘5’ is not same as the number 5. The last constants is a blank

Space.

Page 20 of 69

US06CCSC01 Unit - I
OOP using Java

String Constants

 A string constants is a sequence of characters enclosed between double quotes. The
character may be alphabets, digits, special character and blank spaces . For Example are:
 “Hello Java” “1997” “WELL DONE” “?...!” “5+3” “X”

Backslash Character constants

 Java support some special backslash character constants that are used in output

methods. For Example , The symbol ‘\n’ stands for newline character. A list of such backslash

character constants is given in table. Note that each one of them represents one character,

although they consist of two character. These character combinations are known as escape

sequences.

Constant Meaning
‘\b’ back space
‘\f’ Form feed
‘\n’ New line
‘\r’ Carriage return
‘\t’ Horizontal tab
‘\’ ‘ Single quote
‘\” ’ Double quote
‘\\’ Backslash

Variables

A variable is an identifier that denotes a storage location used to store a data value. Unlike

constant that remain unchanged during the execution of the program. A variable name can be

chosen by the programmer in a meaningful way so as to reflect what it represents in the program.

Some examples of variable names are:

 average

 height

 total_height

 classStrength

Page 21 of 69

US06CCSC01 Unit - I
OOP using Java

As mention earlier,variable names may consist of alphabets, digits, the underscore(_) and dollar

characters, subject to the following conditions:

1. They must not begin with a digit.

2. Uppercase and lowercase are distinct. This means that the variable Total is not the same

as total or TOTAL.

3. It should not be a keyword.

4. White space is not allowed.

5. Variable names can be of any length.

Data Types

Data Types in Java

 Every variable in java as a data type. Data types specify the size and type of values that can

be stored. Java language is rich in it’s data types. The variety of data types available allow the

programmer to select the type appropriate to the need of the application. Data types in java under

Page 22 of 69

DATA TYPES IN JAVA

Primitive
(Instrinsic)

Non-Primitive
(Derived)

Numeric Non-numeric

Integer Floating-point Character Boolean
Interface

ArraysClasses

US06CCSC01 Unit - I
OOP using Java

various categories are shown in figure. Primitive types (also called intrinsic or built-in types) are

discuss in detailed in this chapter. Derived types (also known as reference types) are discussed

later as and when they are encountered.

Integer Types

 Integer types can be hold whole number such as 123,-96 and 5639. The size of the values that

can be stored depends on the integer data types we choose. Java supports four types of integers

as shown in figure. They are byte , short ,integer and long java does not support the concept of

unsigned types and therefore all java values are signed meaning they can be positive or negative.

Below table shows the memory size and range of all four integer data types.

SIZE AND RANGE OF INTEGER

 It should be remembered that wider data types require more time for manipulation

and therefore it is advisable to use smaller data types, wherever possible. For example instead of

storing a number like 50 in an integer type variable, we must use a byte variable to handle this

number. this will improve the speed of execution of the program.

Page 23 of 69

Integer

Byte Short Int Long

US06CCSC01 Unit - I
OOP using Java

 We can make integer long by appending the letter L or 1 at the end of the number.

example:

 123L or 1231

Floating Point Types

Integer types can hold only whole number and therefore we use another type known as

floating point type to hold numbers containing fractional parts such as 27.59 and -1.375(known

as point constants).There are two kinds of floating point storage in java as shown in fig.

 The float type values are single-precision numbers while the double types represent double-

precision numbers. Table give the size and range of the two types.

 Floating point numbers are treated as double-precision quantities. to force them to be in

single-precision mode, we must append f or F to the number, Example:

 1. 23f

 7.56923e5F

Size and Range of Floating Point Types

 Double –precision types are used when we need greater precision in storage of floating

point number. All mathematical functions, such as sin ,cos and sqrt return double type values.

 Floating point data types supports special value known as Not a-Number (NaN). NaN is

used to represent the result of operation such as dividing zero, where an actual number is not

producted. Most operations that have NaN as an operand will produce NaN as aresult.

Character Type
In order to store character constants in memory . java provides a character data type

called char. The char type assumes a size of 2 bytes but, basically ,it can hold only a single

character.
Boolean Type

Page 24 of 69

Floating
Point

Floating
Point

Double

US06CCSC01 Unit - I
OOP using Java

 Boolean type is used when we want to test a particular condition during the

execution of the program. There are only two values that a Boolean type can take; true or false.

Boolean type is denoted by the keyword boolean and uses only one bit of storage.

 All comparison operation return boolean type values. Boolean values are often used in

selection and iteration statements . The words true or false cannot be used as identifiers.

Declaration of Variables

In Java, variables are the names of storage locations. After designing suitable variable names, we

must declare them to the compiler. Declaration does three things:

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

3. The place of declaration (in the program) decides the scope of the variable.

A variable can be used to store a value of any data type. That is, the name has nothing to do with

the type. Java allows any properly formed variable to have any declared data type. The

declaration statement defines the type of variable. The general form of declaration of a variable

is:

type variable1, variable2......................variableN:

Variables are separated by commas. A declaration statement must end with a semicolon. Some
valid declarations are:

int count;
float x, y;
double pi;
byte b;
char c1, c2, c3;

Giving Values to Variables

A variable must be given a value after it has been declared but before it is used in an expression.

This can be achieved in two ways:

1. By using an assignment statement

2. By using a read statement

Assignment Statement

A simple method of giving value to a variable is through the assignment statement as follows:

Page 25 of 69

US06CCSC01 Unit - I
OOP using Java

variableName = value;

For example:

InitilValue = 0;
finalValue = 100;
yes = ‘x’;

we can also string assignment expression as shown below:
x = y = z = 0;

It is also possible to assign a value to a variable at the time of its declaration. This takes the form:

Type variableName = value;

Examples:

int finalValue = 100;

char yes = ‘x’;

double total = 75.36;

The process of giving initial values to variable is known as the initialization. The ones

that are not initialized are automatically set to zero. The following are valid Java statements:

float x, y, z; // declares three float variables

int m = 5, n = 10; // declares and initializes two int variables

int m, n = 10; // declares m and n and initializes n

Read Statement

We may also give values to variables interactively through the keyword using the readLine()

method as illustrated in below example.

import java.io.DataInputStream;

class Reading{

public static void main(String args[]){

DataInputStream in = new DataInputStream(System.in);

int intNumber = 0;

float floatNumber = 0.0f;

try

{ System.out.println(“Enter an integer:”);

intNumber = Integer.parseInt(in.readLine());

Page 26 of 69

US06CCSC01 Unit - I
OOP using Java

System.out.println(“Enter a float number”);

floatNumber = Float.valueOf(in.readLine().floatValue());

}catch(Exception e) { }

System.out.println(“intNumber = “ + intNumber);

System.out.prinlnt(“floatNumber=” +floatNumber);

}

}

The interactive input and output of above Program are shown below:
Enter an integer:
123
Enter a float number:
123.45
intNumber = 123
flaotnumber = 123.45

The readLine() method (which is invoked using an object of the class DataInputStream) reads the

input from the keyword as a string which is then converted to the corresponding data type using

the data type wrapper classes.

Note that we have used the keywords try and catch to handle any errors that might occur

during the reading process.

Scope of Variables

Java variables are actually classified into three kinds:

 instance variables

 class variables, and

 local variables.

Instance and class variables are declared inside a class. Instance variables are created when the

objects are instantiated and therefore they are associated with the objects. They take different

values for each object. On the other hand, class variables are global to a class and belong to the

entire set of objects that class creates. Only one memory location is created for each class

variable. Instance and class variables will be considered in detail in later chapters.

Variables declared and used inside methods are called local variables. They are called so

because they are not available for use outside the method definition. Local variables can also be

Page 27 of 69

US06CCSC01 Unit - I
OOP using Java

declared inside program blocks that are defined between an opening brace { and a closing

brace }. These are visible to the program only from the beginning of its program block to the

end of the program block. When the program control leaves a block, all the variables in the block

will cease to exist. The area of program where the variable is accessible is called its scope.

We can have program blocks within order program blocks (called nesting) as shown in below

figure.

Each block can contain its own set of local variable declarations. We cannot, however, declare a

variable to have the same name as one in an outer block. In above figure variable x declared in

Block1 is available in all the three blocks. However, the variable n declared in Block2 is

available only in Block2, because it goes out of the scope at the end of Block2. Similarly, m is

accessible only in Block3.

Page 28 of 69

{
int x = 0;

Block2

Block3

}

{
:
:
int n = 5;
:
:
}

{
:
:
int m = 10;
:
:
}

US06CCSC01 Unit - I
OOP using Java

Note that we cannot declare the variable x again in Block2 or Block3.

Type Casting

We often encounter situations where there is a need to store a value of one type into a variable of

another type. In such situations, we must cast the value to be stored by proceeding it with the

type name in parentheses. The syntax is:

type variable1 = (type) variable2;

The process of converting one data type to another is called casting. Examples:
int m=5;
byte n= (byte)m;
long count=(long)m;

Casting is often necessary when a method returns a type different than the one we require.

Four integer types can be cast to any other type except boolean. Casting into a smaller type

may result in a loss of data. Similarly, the float and double can be cast to any other type except

boolean. Again, casting to smaller type can result in a loss of data. Casting a floating point value

to an integer will result in a loss of the fractional part. Below table lists those casts, which are

guaranteed to result in no loss of information.

From To
byte Short, char, int, long, float, double
short int, long, float, double
char int, long, float, double
int Long, float, double
long float, double
float double

Automatic Conversion

For some types, it is possible to assign a value of one type to a variable of a different type

without a cast. Java does the conversion of the assigned value automatically. This is known as

automatic type conversion. Automatic type conversion is possible only if the destination type has

enough precession to store the source value. For example, int is large enough to hold a byte

value. Therefore,

byte b = 75;

int a = b;

Page 29 of 69

US06CCSC01 Unit - I
OOP using Java

are valid statements.

The process of assigning a smaller type to a longer one is known as widening or promotion

and that of assigning a larger type to a smaller one is known as narrowing. Note that narrowing

may result in loss of information.

Program illustrate the creation of variables of basic types and also shows the effect of type

conversions.

class TypeWrap
{

public static void main(String args[])
{

System.out.println(“Variables created”);
char c = ‘x’;
byte b = 50;
short s = 1996;
int i = 123456789;
long l = 1234567654321L;
float f1 = 3.142F;
float f2 = 1.2e-5F;
double d2 = 0.000000987;
System.out.println(“ c =” + c);
System.out.println(“ b =”+ b);
System.out.println(“ s =”+ s);
System.out.println(“ i =”+ i);
System.out.println(“ l =”+ l);
System.out.println(“ f1 =”+ f1);
System.out.println(“ f2 =”+ f2);
System.out.println(“ d2 =”+ d2);
System.out.println(“”);
System.out.println(“Types converted”);
short s1= (short) b;
short s2= (short) b; // Produces incorrect result
float n1= (float) l;
int m1= (int) f1; //Fractional part is lost
System.out.println(“ (short) b = ” + s1);
System.out.println(“ (short) i = ” + s2);
System.out.println(“ (float) l = ” + n1);

Page 30 of 69

US06CCSC01 Unit - I
OOP using Java

System.out.println(“ (int) f1 = ” + m1);
}

}

Output of Program
Variables created
c = x
b = 50
s = 1996
i = 123456789
l = 1234567654321
f1 = 3.142
f2 = 1.2e-005
d2 = 9.87e-007
Types converted
(short)b = 50
(short)i = -13035
(float)l = 1.23457e+012
(int) f1 = 3

Note that floating point constants have a default of double. What happens when we want to

declare a float variable and initialize it using a constant? Example:

float x = 7.56;

This will cause the following compiler error;

“Incompatible type for declaration. Explicit cast needed to convert double to float”

This should be written as

float x = 7.56F;

Page 31 of 69

US06CCSC01 Unit - I
OOP using Java

Getting Values of Variables

A computer program is written to manipulate a given set of data and to display or print the

results. Java supports two output methods that can be used to send the results to the screen.

 print() method // print and wait

 println() method // print a line and move to next line

the print() method sends information into a buffer. This buffer is not flushed until a newline

(or end-of-line) character is sent. As a result, the print() method prints output on one line until

a newline character is encountered. For example, the statements

System.out.print(“Hello ”);

System.out.print(“Java!”);

Will display the words Hello Java! On one line and waits for displaying further information

on the same line. We may force the display to be brought to the next line by printing a

newline character as shown below:

System.out.print(“\n”);

For example, the statements
System.out.print(“Hello ”);
System.out.print(“\n”);
System.out.print(“Java!”);

will display the output in two lines as follows:
Hello
Java!

The println() method, by contrast, takes the information provided and displays it on a line
followed by a line feed(carriage-return). This means that the statements

System.out.println(“Hello”);
System.out.println(“Java”);

will produce the following output:
Hello
Java!

The statement
System.out.print();

will print a blank line. Program illustrated the behavior of print() and println() methods.
class Displaying
{

public static void main(String args[])
{

System.out.println(“Screen Display”);
for(int i=1; i<=4; i++)

Page 32 of 69

US06CCSC01 Unit - I
OOP using Java

{
for(int j=1; j<=i; j++)
{

System.out.print(“”);
System.out.print(i);

}
System.out.print(“\n”);
}

System.out.println(“Screen Display Done”);
}

}

Program displays the following on the screen:

Screen Display

1

2 2

3 3 3

4 4 4 4

Screen Display Done

Page 33 of 69

US06CCSC01 Unit - I
OOP using Java

Standard Default Values

In java, every variable has a default value. If we don’t initialize a variable when it is first created,

Java provides default value to that variable type automatically as shown in below Table.

Type of variable Default value
Byte Zero : (byte) 0
Short Zero : (short) 0
Int Zero : 0
Long Zero : 0L
Float 0.0f
Double 0.0d
Char null character
Boolean false
Reference null

Operators

Java supports a rich set of operators. Operator is a symbol that tells the computer to perform
certain mathematical or logical manipulations. Operators are used in programs to manipulate
data and variables. They usually form a part of mathematical or logical expressions.

Java operators can be classified into a number of related categories as below:
1. Arithmetic operators.
2. Relational operators.
3. Logical operators.
4. Assignment operators.
5. Increment and decrement operators.
6. Conditional operators.
7. Bitwise operators.
8. Special operators.

Arithmetic Operators
Arithmetic operators are used to construct mathematical expressions as in algebra. Java
provides the following basic arithmetic operators:

Operator Meaning
+ Addition or unary plus
- Subtraction or unary minus
* Multiplication
/ Division
% Modulo division (Remainder)

Arithmetic operators are used as shown below:

a – b a + b

Page 34 of 69

US06CCSC01 Unit - I
OOP using Java

 a * b a / b
a % b -a * b

Here a and b may be variables or constants and are known as operands.

Integer Arithmetic
When both the operands in a single arithmetic expression such as a + b are integers, the
expression is called an integer expression, and the operation is called integer arithmetic.
Integer arithmetic always yields an integer value.
Eg:- If a and b are integers, then for a=14 and b=4 we have the following results:

a – b = 10
a + b = 18
a * b = 56
a / b = 3 (decimal part truncated)
a % b = 2 (remainder of integer division)

For modulo division, the sign of the result is always the sign of the first operand (the
dividend). i.e.

-14 % 3 = -2
-14 % -3 = -2
 14 % -3 = 2

Real Arithmetic
An arithmetic operation involving only read operands is called real arithmetic. A real operand
may assume values either in decimal or exponential notation.
Mixed-mode Arithmetic
When one of the operands is real and the other is integer, the expression is called a mixed-
mode arithmetic expression. If either operand is of the real type, then the other operand is
converted to real and the real arithmetic is performed. The result will be a real.

Eg:- 15 / 10.0 produces the result 1.5
Whereas 15 / 10 produces the result 1

Relational Operators
We often compare two quantities, and depending on their relation, take certain decisions. For
example, we may compare the age of two persons, or the price of two items, and so on. These
comparisons can be done with the help of relational operators.

Relational Operators
< is less than
<= is less than or equal to
> is greater than
>= is greater than or equal to
== is equal to
!= is not equal to

A simple relational expression contains only one relational operator and is of the following form:

Page 35 of 69

US06CCSC01 Unit - I
OOP using Java

ae-1 relational operator ae-2

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or
combination of them.
Eg:

4.5 <= 10 TRUE
-35 > = 0 FALSE
10 < 7+5 TRUE

When arithmetic expressions are used on either side of a relational operator, the arithmetic
expressions will be evaluated first and then the results compared. That is, arithmetic operators
have a higher priority over relational operators.

class Relational0perators
{
public static void mairl(String args[])
{
float a = 15.0F, b = 20.tSF, c = 15,0F;
System.out.pnintln(" a = " + a);
System.out.println(" b = " + b);
System.out.println(" c = " + c);
System.out.println(" a < b is ': + (a<b)); .,
System.out.println(" a > b is " + (pb)):
System.out.pnintln(" a =: c is " + (a==c));
System.out.println(" a <= c js " + (a<=c));
System.out..println(" a >= b is " + (a>=b));
System.out.println(" b != c is " + (bl:c));
System.out.println(" b == a+c is " + (b=:a+c)):
)
)

The output of Program 5.2 would be:
a=15
b : 20.75
c=15
a<b is true
a>b is false
a == c is true
a <= c is true
a >= b is false
a != c is true
b == a+c is false

Relational expressions are used in decision statements such as, if and while to decide the

Page 36 of 69

US06CCSC01 Unit - I
OOP using Java

course of action of a running program.

Logical Operators
Java has three logical operators, which are given in below:

Logical Operators

Operator Meaning
&& logical AND
 || logical OR
 ! logical NOT

The logical operators && and || are used when we want to form compound conditions by
combining two or more relations. An example is:

a > b && x == 10

An expression of this kind which combines two or more relational expressions is termed as a
logical expression or a compound relational expression. Like the simple relational expressions, a
logical expression also yields a value of true or false.

Assignment Operators

Assignment operators are used to assign the value of an expression to a variable. Java has
shorthand assignment operators which are used in the form

v op= exp;

where v is a variable, exp is an expression and op is a Java binary operator The operator op= is
known the shorthand assignment operator.
The assignment statement

v op= exp;
is equivalent to

v = v op(exp);
with v accessed only once. Consider an example

x += y+1:
This is same as the statement

x = x+(y+l);

The shorthand operator += means 'add y+1 to x' or 'increment x by y+1'. For y=2, the above
statement becomes x+=3;
and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the new
value of x is 8. Some of the commonly used shorthand assignment operators are illustrated
below:

Shorthand Assignment Operators

Page 37 of 69

US06CCSC01 Unit - I
OOP using Java

Statement with simple
assignment operator

Statement with
shorthand operator

a = a+l
a = a-1
d = a*(n+1)
a = a/(n+1)
a = a%b

a += 1
a -= 1
a *= n+1
a /= n+1
a %= b

The use of shorthand assignment operators has three advantages:
1. What appears on the left-hand side need not be repeated and therefore it becomes easier to

write.
2. The statement is more concise and easier to read.
3. Use of shorthand operator results in a more efficient code.

Increment and Decrement Operators

Java has two very useful operators not generally found in many other languages. These are i
increment and decrement operators;

++ and --

The operator ++ adds 1 to the operand while – subtracts1. Both are unary operators and are used
in the following form:

++m; or m++;
--m or m--;
++m, is equivalent to m = m + l, (on m += 1;)
-- m; is equivalent to m = m - 1; (or m -= 1;)

While ++m and m++ mean the same thing when they form statements independently, they
behave differently when they are used in expressions on the right-hand side of an assignment
statement.
Consider the following:

m = 5,
y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the above statement as
m = 5;
y = m++;

then value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand and
then the result is assigned to the variable on left. On the other hand, a postfix operator first
assigns the value to the variable on left and then increments the operand.

Page 38 of 69

US06CCSC01 Unit - I
OOP using Java

Increment Operator illustrated
class IncrementOperator
{
 public stalic void main(String angs[])
 {

int m=10,n=20;
System.out.println("m = " + m);
System.out.println("n = " + n);
System.out.println("++m = " + ++m);
System.out.println("n++ = " + n++);
System.out.println("m "+ m);
System.out.println("n = " + n);

 }
}
Output of above Program is as follows:
m = 10
n = 20
++m = 11
n++ = 20
m = 11
n = 21

Similar is the case, when we use ++ (or --) in subscripted variables. That is, the statement
a[i++] = 10
is equivalent to
a[i] = 10
i = i+1
Conditional Operator
The character pair ? : is a ternary operator available in Java. This operator is used to construct
conditional expressions of the form

exp1?exp2:exp3
where exp1, exp2, and exp3 are expressions.
The operator ? : works as follows: exp1 is evaluated first. If it is nonzero (true), then the
expression exp2 is evaluated and its value becomes the value of the conditional expression. Only
one of the expression (either exp2 or exp3) is evaluated.
For example, consider the following statements:

a = l0:
5 =15;
x = (a > b) ? a : b;

In this example, x will be assigned the value of b. This can be achieved using the if..else-
statement as follows:

if(a > b)
x=a;

else
x=b;

Page 39 of 69

US06CCSC01 Unit - I
OOP using Java

Bitwise Operators

Java has a distinction of supporting special operators known as bitwise operators for
manipulation of data at values of bit level. These operators are used for testing the bits, or
shifting them to the right or left. Bitwise operators may not be applied to float or double.

Bitwise Operators

Special Operators
Java supports some special operators of interest such as instanceof operator and member
selection operator (.).

Instanceof Operator
The instanceof is an object reference operator and returns true if the object on the left-hand side
is an instance of the class given on the right-hand side. This operator allows us to determine
whether the object belongs to a particular class or not.

Example:

person instanceof student

is true if the object person belongs to the class student; otherwise it is false.

Dot Operator
The dot operator (.) is used to access the instance variables and methods of class objects.
Examples:

person1.age // Reference to the variable age
person1.salary() // Reference to the method salary()

It is also used to access classes and sub-packages from a package.

Page 40 of 69

US06CCSC01 Unit - I
OOP using Java

Decision Making with If Statement
 The if statement is a powerful decision making statement and is used to control the flow
of execution of statement .it is basically a two –way decision statement and is used in
conjunction with an expression . it takes the following form:
 If (test expression)
 It allows the computer to evaluate the expression first and then ,depending on whether
the value of the expression (relation or condition) is ‘true’ or ‘false’ , it transfer the control to a
particular statement. This point of program has two paths to follow, one for the true condition
and the other for the false condition as shown in the below figure

Some example of decision making, using if statement are: -
1. If (bank balance is zero)

Borrow money
2. If(room is dark)

Put on lights
3. if(code is 1)

Person is male
4. if(age is more then 55)

Person is retired
The if statement may be implemented in different forms depending on the complexity of
conditions to be tested.

1. Simple if statement
2. If…else statement
3. Nested if…else statement
4. Else if ladder

Simple if statement
The general form of a simple if statement is

 If (test expression)
 { Statement - block;
 }
 Statement - x:

The ‘statement –block’ may be a single statement or a group of statements. If the test expression
is true , the statement-block will be executed ; otherwise the statement –block will be skipped
and the execution will jump to the statement-x.
It should be remembered that when the condition is true both the statement –block and the
statement –x are executed in sequence. This is illustrated in the below give figure

Page 41 of 69

US06CCSC01 Unit - I
OOP using Java

Consider the following segment of a program that is written for processing of marks obtained in
an entrance examination.

 …………………
 ………………..
 If (category == SPORTS)
 {
marks = marks + bonus _marks;
 }
System.out.println(marks);
 ………………
 ………………

The program tests the type of category of the student .if the student belongs to the SPORTS
category , then addition bonus _marks are added to his marks before they are printed . For others
,bonus _marks are not added.
Consider a case having two test condition ,one for weight and another for height. This is done
using the compound relation

 If (weight < 50 && height > 170) count =count +1;

 This would have been equivalently done using two if statement as
follow:
 If (weight <50)
 If (height>170)
 Count = count+1;

If the value of weight is less then 50, then the following statement is executed , which in turn is
another if statement. This is statement tested height and if the height is greater than 170, then
the count is incremented by 1 . program illustrates the implementation of the above statement .

classIfTest
 {
 public static void main(String arg[])
 {
int i,count,count1,count2;
float[] weight = {45.0f , 55 .0f, 47 .0f, 51.0f, 54.0f};
float [] weight ={ 176.5f,174.2f,168.0f,170.7f,169.0f};
count =0;
 count1=0;
 count2=0;
 For (i = 0 ;i<=4 ; i++)
 {
If(weight[i] <50.0 && height[i]>170.0)

 {
 count1=count1+1;

 }
count=count +1;// total persons

Page 42 of 69

US06CCSC01 Unit - I
OOP using Java

 }
 count2=count –count1;
System.out.println(“Number of person with…”);
System.out.println(“weight<50 and height>170 =” +count1);
System.out.println(“Other = “+count2);
 }
 }

The output of program will be
 Number of person with…
 Weight < 50 && height >170 =1
 Other = 4

THE IF…ELSE STATEMENT
The if…else statement is an execution of the simple if statement .the general form is

if (test expression)
 {
 True- block statement(s)
 }

else
 {
 False - block statement(s)
 }
 Statement-X
 If the test expression is true ,then the true –block statement(s) immediately following the if
statement, are executed ;otherwise ,the false –block statement (s) executed. In either true-block
or false-block will be executed ,not both . this is illustrated in fig 6.3. In both the cases is
transferred subsequently to the statement-x.

Let us consider an example of counting the number of boys and girls in a class .we use code 1 for
a boy and 2 for a girl. The program statements to do this may be written as follows:
 …………………
 ………………..

if (code == 1)
boy = boy+1;
if (code == 2)
girl =girl+1;
 ………………
 ………………

 The first test determine whether or not the student is a boy, if yes, the number of boys is
increment by 1 and program continues to the second test. The second test again determine
whether the student is girl. This is unnecessary. Once a student is identified as a boy, there is no
need to test again for a girl. A Student can be either a boy or girl, not both . the above program
segment can be modified using the else clause as follows:
 …………………
 ………………..

if (code == 1)
boy = boy+1;

Page 43 of 69

US06CCSC01 Unit - I
OOP using Java

else
girl =girl+1;
 X XX ;
 ………………

 Here, if the code is equal to 1, the statement boy=boy+1; is executed and the
control is transferred to the statement X XX , after skipping the else part . if the code is not equal
to 1, the statement boy = boy+1; is skipped and the statement in the else part girl=girl+1; is
executed before the control reaches the statement xxx.
Program 6.2 counts the even and odd numbers in a list of number using the if…else statement
.number[] is array variable containing all the number and number. length gives the number of
elements in the array.
Program 6.2 Experimenting with if…..else:-
 Class IfElseTest
 {

public static void main(String arg[])
 {

int number []={50,65,56,71,81};
int even=0; odd=0;
for(int i=0; i<number.length;i++)

 {
if(number[i] % 2) = = 0) // decide even or odd

 {
even+=1; // counting even numbers

 }
else

 {
odd +=1; // counting odd numbers

 }
 }

System.out.println(“Even Numbers:”+ even + “Odd Numbers: ” + odd);
 }

}
Output of program

 Even Numbers : 2 Odd Numbers : 3

NESTING OF IF ….ELSE STATEMENTS
When a series of decisions are involved ,we may have to use more than on if ….else statement in
nested form as follows:

 The login of execution is illustrated in fig 6.4 .if the condition -1 is false ,the
statement-3 will be executed: otherwise it continues to perform the second test. if the condition

Page 44 of 69

US06CCSC01 Unit - I
OOP using Java

-2 true then statement 1 will be evaluated : otherwise the statements-2 will be evaluated and then
the control is transferred to the statement-x.
 A commercial bank has introduced an incentive policy of giving bonus to all its deposit
holder. The policy is as follows: a bonus of 2 per cent of the balance held on 31 st December is
given to every one,
Irrespective of their balances, and 5 per cent is given t female account holders if their balance is
more than rs 5000. This login can be coded as follows:

……………………
If(sex is female)
{
If(balance > 5000)
 Bonus=0.0.5*balance;
Else
Bonus=0.02*balance;
}
Else
{
bonus=0.02*balance;
}
Balance=balance+bonus;
…………………………….
……………………………

When nesting care should be exercised to match every if with an else .consider the following
alternative to the above program (which looks right at the first sight):

 If (sex is female)
If(balance > 5000)

Bonus=0.05*balance;
Else

Bonus=0.02*balance;
Balance=balance*bonus;

 There is an ambiguity as to over which if the else bonus belongs to . Java an else is linked to
the closed non-terminated .therefore , the else is associated with the inner if and there is no else
option for the outer if.This means that the computer is trying to executed the statement

balance=balance+bonus;
without really calculating the bonus for the male account holder.
Consider the another alternative ,which also looks correct:

 If (sex is female)
{
If(balance > 5000)

 Bonus=0.05*balance;
}

Else

Bonus=0.02*balance;
Balance=balance*bonus;

Page 45 of 69

US06CCSC01 Unit - I
OOP using Java

 IN this case, else is associated with the outer if and therefore bonus is calculated for the male
account holders. However , bonus for the female account holder, whose balance is equal to or
less then 5000 is not calculated because of the missing else option for inner if .

THE ELSE IF LADDER
THERE IS another way is putting ifs together when multipath decision are involved. A
multipath decision is a chain of its which the statement associated with each else is an it. It takes
the following general form.

 This construct is known as the else if ladder. The condition are evaluated from the top(of the
ladder), downwards. As soon as the true condition is found ,the statement associated with it is
executed and the control is tarnsferred to the statement-x(skipping the rest of this ladder). When
all the n condition becomes false, then the final else containing the default-statement will be the
executed. figure 6.5 shows the logic of execution of else if ladder statements.
Lets us consider an example of grading the students in an academic institution. the grading is
done according to the following rules:

Average marks Grade
 80 to 100 Honours
 60 to 79 First Division
 50 to 59 Second Division
 40 to 49 Third Division
 0 to 39 Fail

 This grading can be done using the else if ladder as follows:
If(marks > 79)
 Grade=”Honours”;
Else if(marks > 59)
Grade =”First Division”;
Else if(marks > 49)
 Grade =”Second Division”;
Else if(marks > 39)
 Grade =”Third Division”;
Else
Grade =”Fail”;
System.out.println(“Grade:”+grade);

Consider another example given below:
……………………..
…………………….
 If (code == 1)
Color= ”Red”;
else If (code == 2)

Page 46 of 69

US06CCSC01 Unit - I
OOP using Java

Color= ”Green”;
else If (code == 3)
Color= ”WHITE”;
Else
Color=”Yellow”;
……………………………….
……………………………….
Code number other then 1,2,or 3 are consider the represented YELLOW
color. The same result can be obtained by using the nesting if……else
statements.
If(code != 1)
If(code != 2)
If(code != 3)
color=”YELLOW”;
else
color=”WHITE”;
else
color=”GREEN”;
else
color=”RED”;
in such situation , the choice of the method is left to the programmer.
However , in order to choose an if structure that is both efficient, it is
import to that the programmer is fully aware of the various forms of an if
statement and the rules governing their nesting.
 Program 6.4 demonstrates the use of if ….else ladder
in analyzing a mark list.

THE SWITCH STATEMENT
 We have seen that when one of the many alternative is to be selected, we can design
a program using the if statement to control the selection. However, the complexity of such a
program increase dramatically when the number of alternative increase. the program becomes
difficult to read and follow. At times, it may confuse as switch. The switch statement tests the
value of a given variable against a list of case values and when a match is found ,a block of
statement associated with that case is executed. the general form of the switch statement is as
below:
Switch(expression)
 {

Case value-1
Block-1
Break;

Case value-2
Block-2
Break;

………..
……….
……….

Page 47 of 69

US06CCSC01 Unit - I
OOP using Java

Default:
Default –block

Break;
}
Statement-x;

The expression is an integer expression or character .value-1,value-2….are constants or constant
expression and are known as case lables, each of these values should be unique within a switch
statement ,block-1,block-2..are statement lists and many contain zero or more statement . there
is no need to put braces these blocks but it is important to note that case labels end with a
colon(;).
 When the switch is executed ,the value of the expression is successively compared against
the values value-1,value-2….if the a case is found whose value the matches with the value of the
expression ,then the block of statement that follows the case are executed.

The break statement at the end of the each of block signals the end of a particular case
and cause an exit from the switch statement, transferring the control to the statements-x
following the switch.

The default is an optional case. When present ,it will be executed if the value of the
expression does not match with any of the case values. If not present , no action takes place
when all matches fail and control goes to the statement-x.

The selection process of switch statement is illustracted in the flowchart shown in fig 6.6:=
The switch statement can be used to grade the students as discussed in the lat section. This is
illustrated below:
 ………………
………………
 Index=marks/10;
Switch(index)
{
case 10:
case 9:
case 8:
 grade=”Honours”;
break;
case 7:
case 6:
 grade=”First division”;
break;
case 5:
 grade=”second division”;
break;
case 4:
 grade=”Third division”;

Page 48 of 69

US06CCSC01 Unit - I
OOP using Java

break;
default:
 grade=”fail”;
break;
}
System.out.println(grade);
…………..
…………..
Note that we have used a conversion statement
Index =marks/10;
Where, index is defined as an integer. The variable index takes the following integer values:
 MARKS INDEX

100 10
90-99 9
80-89 8
70-79 7
60-69 6
50-59 5
40-49 4
30-39 3

 20-29 2
 10-19 1
 0-9 0

The statement of the program illustrated two important features, first it used empty cases. The
first three cases will executed the same statement:
 grade=”Honours”;
break;
Same is the case with case 7and case 6. Second, default condition is used for all other cases
where marks is less then 40.
 Program 6.5 illustrates the use of switch for designing a menudriven interactive program:
 Program 6.5:=

6.8 THE ?:OPERATOR:=
 The java language has an unusual operator, useful for the making two-way decision . this
operator is a combination of ? and : , and the task three operands. This operator is popularly
known as the conditional operator. The general form of use of the conditional operator is as
follows:
Conditional expression ? expression1: expression2
 The Conditional expression is evaluated first. if the result is true expression 1 is evaluated and
is returned as the value of Conditional expression. Otherwise ,expression 2 is evaluated and its
values is returned. For example, the segment
 If(x<0
Flag=0;

Page 49 of 69

US06CCSC01 Unit - I
OOP using Java

Else
Flag=1
;
Can be written as flag=(x<0)?0:1;
Consider the evaluated of the following function:
Y=1.5x + 3 for x<=2
Y=2x + 5 for x>2

 This can be evaluated using the condition operator as follows:
 Y=(x>2) ? (2*x+5) : (1.5*x+3);
 The conditional operator may be nested for evaluated more complex assignment decision .for
example ,consider the weekly salary of a sales girl who is selling some domestic products. If x is
the number of products sold in week, her salary is given by

{ 4x + 100 for x<40 }
 Salary= { 300 for x=40 }
{ 4.5x +150 for x>40 }

This is complex equation can be written as
 Salary =(x!=40)? ((x<40) ? (4*x+100):(4.5*x+150)):300;
 The same can be evaluated using the if…..else statements as follow:
 If(x <= 40)
 If(x<40)

Salary=4*x+100;
 Else

 Salary=300;
Else
 Salary =4.5*x+150;

When the conditional operator is used , the code becomes concise and perhaps,
more efficient .however the readability is poor . it is better to use if statement when more then a
single nesting of conditional operator is required.

Unit 2
7.1
Decision making and looping
A looping process, in general, would include the following four steps :

1. Setting and initialization of a counter
2. Execution of the statement in the loop
3. Test for a specified condition for execution of the loop
4. Incrementing the counter
The test may be either to determine whether the loop has been repeted the specified number
of times or to determine whether a particular condition has been met with.
The java language provides for three construct for performing loop operations. They are
1. WHILE construct
2. Do construct

Page 50 of 69

US06CCSC01 Unit - I
OOP using Java

3. FOR construct
we shall discuss the features and applications of each of these constructors in
this chapter.

7.2
The while statement
The simplest all the looping structure in java is the while statement. The
basic format of the while statement is

Intialization :
While (test condition)
{

Body of the loop
}

The while is an entry controlled loop statement. The test condition is evaluated and if the
condition is true, then the body of the loop is executed. After execution of the body, the test
condition is once again evaluated and if it is true, the body is executed once again . this process
of repeated execution of the body continues until the test condition finally becomes false and the
control is transferred outof the loop. On exit, the programs continues with the statement
immediately after the body of the loop.

The body of the loop may have one or more statements. The braces are needed only if the
body contains two or more statements. However , it is good pratice to use braces even if the body
has only one statement.
Consider the following code segment
..................................
..................................
Sum=0;
N=1;
While(n < = 10)
{

Sum = sum + n * n;
n = n + 1 ;

}
System.out.println(“Sum= “ + sum);
..................................
..................................

The body of the loop is executed 10 times for n = 1,2 ,..........,10 each time adding the square of
the value of n, which is incremented inside the loop. The test condition may also be written as n
< 11; the result would be the same. Program 7.1 illustrates the use of the while for reading a
string of the characters from the keyboard. The loop terminates when c= ‘\n’, the newline
character.

Program 7.1 using while loop
Class WhileTest
{

Page 51 of 69

US06CCSC01 Unit - I
OOP using Java

 Public static void main (String args [])
{

StringBuffer string = new stringBuffer();
Char c;
System.out.println(“ENTE R THE STRING “);
try
{

While ((c= (char) System.in.read()) != ‘\n’)
{

String.append(c) ; // Append character
}

 }
Catch (Exception e)

{
System.out.println(“Error in input”);

}
System.out.println(“You have entered “);
System.out.println(string);
}

}

Given below is the output of Program 7.1 :
Enter a string
Java is a true object-oriented language

You have entered . .
Java is a true object-oriented language

7.3 The do STATEMENT
The while loop construct that we have discussed int he previous section makes a test condition
before the loop is executed . therefore, the body of the loop may not be executed at all if the
condition is not satisfied at the very first attempt. On some occasions it might be necessary to
execute the body of the loop before the test is performed. Such situations can be handled with the
of the do statement .this takes the form.

Initialization;
do
{

Body of the loop
}
While (test condition);

On reaching the do statement , the programs proceeds to evaluate the body of the loop first. At
the end of the loop , the test condition in the while statement is evaluated. If the condition is
true, the programs continues to evaluate the body of the loop once again .this process continues

Page 52 of 69

US06CCSC01 Unit - I
OOP using Java

as long as the condition true . when the condition becomes false, the loop will be terminated and
the control goes to the statement that appears immediately after the while statement .

Since the test condition is evaluated at the bottom of the loop, the do....while construct
provides and exit-controlled loop and therefore the body of the loop is always executed at least
once.

Consider an example :
................................
................................

 i = 1;
sum = 0 ;
do
{

Sum = sum + i ;
i = i + 2 ;

}
While (sum< 40 || i < 10) ;
...
...

The loop will be executed as long as one of the two relations is true . programs 7.2 illustrates the
use of do. ...while loops for printing a multiplication table.
Programs 7.2 printing multiplication table using do...... while loop.
Class Dowhiletest
{

Public static void main (Stringargs [])
{

Int row, column, y;
System.out.println (“ MULTIPLICATION TABLE \n”);
row = 1;
do
{

Column = 1 ;
do
{

y = row * column ;
System.out.print(“ “ + y);
Column = column + 1 ;

}

While (column< = 3) ;
System .out.println(“\n”);
row = row + 1 ;

}
While (row < = 3) ;

Page 53 of 69

US06CCSC01 Unit - I
OOP using Java

 }
}

Program 7.2 uses two do-while loops in nested form and produces the following output :
Multiplication Table
1 2 3
2 4 6
3 6 9
Table 7.1 lists the differences between while and do-while loops.

while do-while
it is a looping construct that It is a looping constuct that will execute
will execute only if the test condition is true. At leat once even if the test condition is

false .

it is an entry- controlled loop . it is an exit-controlled loop.

It is generally used for implementing it is typically used for implementing menu
Common looping situation . based programs where the menu is required

to be printed at least once

7.4 THE for STATEMENT
The for loop is another entry- controlled loop that provides a more concise loop control
structure. The general form of the for loop is

For (initialization ; test condition ; increment)
{

Body of the loop
}

The execution of the for statements is as follows :
1. Initialization of the control variables is done first, using assigment

statements such as i = 1 and count = 0. The variables i and count are
known as loop-control variables .

2. The value of the control variable is tested using the test condition . the test
condition is arelational expression, such as i < 10 that determines when the
loop will exit . if the condition is TRUE , the body of the loop is executed ;
otherwise the loop is terminated and the execution continues with the
statement that immediately follows the loop .

Page 54 of 69

US06CCSC01 Unit - I
OOP using Java

3. When the body of the loop is executed , the contol is transfered back to the
FAR statement after evaluating the last statement in the loop . now , the
control variable is INCREMENTED using an assignment statement such as i =
i + 1 and the new value of the control variable is again tested to see whether
it satisfies the loop condition . if the condition is satisfied , the body of the
loop is again executed . this process continues till the value of the control
variable fails to stisfy the test condition .

Consider the following segment of a program.
For (x = 0 ; x < = 9 ; x = x + 1)
{

System .out.println(x);
}

This for loop is executed 10 times and prints the digits 0 to 9 in one line . the three sections
enclosed within parantheses must be seperated y semicolons . note that there is no semicolon at
the increment section , x = x + 1 .
This for loop allows for negative increments. For exemples, the loop discussed above can be
written as follows :
 For (x = 9 ; x > = 0 ; x = x-1)
System.out.println(x);
This loop is also executed 10 times, but the output would be from 9 to 0 instead of 0 to 9 . note
the braces are optional when the body of the loop contains only one statement.

Since the conditional test is always performed at the beginning of the loop , the body of
the loop may not be executed at all , if the condition fails at the start, for example .
For (x = 9 ; x < 9 ; x = x – 1)
{
..
...
}

Will never be executed because the test condition fails at the very beginning itself . .
Let us consider the problem of the sum of the squares of the integers discussed in section.

this problem can be coded using the for statements as follows . ;
..
..
Sum = 0 ;
For (n = 1 ; n < = 10 ; n = n + 1)
{

Sum = sum + n*n ;
}

..

..

The body of the loop

Page 55 of 69

US06CCSC01 Unit - I
OOP using Java

Sum = sum + n*n ;
Is executed 10 times for n= 1, 2 . . . , 10 each times incrementing the sum by the square of the
value of n .

One of the important points about the FOR loop is that all the three actions , namely
intialization, testing and incrementing , are placed in the for statements itself, thus making them
visible to the programmes and users , in one place . the FOR statement and its equivalent of
WHILE and DO statements are shown in table
Table comparison of the Three loops

for while do
for (n =1; n<=10;++n) n =1 n = 1
{ while (n <= 10) do
................................. { {
.................................
}

n = n + 1 ; n = n + 1 ;
} }

While (n< = 10) ;

Programs illustrates the use of for loop for computing and printing the “ power of 2 “ table .

Programs computing the ‘ power of 2 ‘ using for loop

Class ForTest
{

Public static void main (Stringargs [])
{

long p ;
int n;
double q;
system.out.println(“ 2 to power –n n 2 to power n “)
p=1;

for (n = 0 ; n < 10 ; ++n)
{

if (n == 0)
p = 1;

else
p = p * 2 ;

q = 1.0 / (double) p ;
system.out.println(“ “ + q + “ “ + n + “ “ + p);

Page 56 of 69

US06CCSC01 Unit - I
OOP using Java

}
 }

}

Output of program would be :
2 to power –n n 2 to power n
1 0 1
0.5 1 2
0.25 2 4
0.125 3 8
0.0625 4 16
0.03125 5 32
0.0152625 6 64
0.00390625 7 128
0.00195313 8 256
0.00195313 9 512

Addtional features of for Loop
the forloop has several capabilities that are not found in other loop constructs . for example ,
more than one variable can be initialized at a time in the forstatement . the statements
p = 1 ;
for(n = 0 ; n < 17 ; ++n)
can be rewritten as
for(p = 1 , n = 0 ; n< 17 ; ++n)
Notice that the initialization section has two parts p = 1 and n = 1 seperated by a comma.
Like the initialization section , the increments sections may also have more than one part. For
example, the loop

For (n = 1, m = 50 ; n = n + 1 , m = m-1)
{

....................................

....................................
}

Is perfectly valid. The multiple arguments in the increments section are seperatedby commas.
The third feature is that the test condition may have any compound reation and the testing

need not be limited only to the loop control variable. Consider the example that follows :

Sum = 0 ;
For(i = 1 , i < 20 && sum < 100 ; ++i)

Page 57 of 69

US06CCSC01 Unit - I
OOP using Java

{
.......................
.......................

}

The loop uses a compound test condition with the control variable i and external variable sum.
The loop is executed as long as both the conditions i<20 and sum<100 are true .the sum

is evaluated inside the loop .
It is also permissible to use expression in the assignment statements of initialization and

increment sections. For example , a statements of the type .

For (x = (m +n)/2; x > 0 ; x = x/2)
Is perfectly valid.

Another unique aspect of for loop is that one or more section can be omitted, if necessary
.consider following statements :

..

..
m=5;
for(;m ! = 100 ;)
{

System.out.println(m);
m = m + 5 ;

}
..
.......................................

Both the initialization and increment sections are omitted in the FOR statement. The
initialization has been done before the FOR statement and the control variable is incremented
inside the loop .in such cases, the sections are left blank. However, the semicolons seperating the
sections must remain . if the test condition is not present , the FOR statement sets up an infinite
loop .

We can set up time delay loops using the null statements as follows :

For (j = 1000 ; j > 0 ; j = j – 1)
;

This loop is executed 1000 times without producing any output; it simply causes a time delay.
Notice that the body of the loop contains only a semicolon , known as an empty statement . this
can also be written as

For (j = 1000 ; j>0; j = j – 1);

Page 58 of 69

US06CCSC01 Unit - I
OOP using Java

This implies that the compiler will not give an error message if we place a semicolon by mistake
At the end of a FOR statement . the semicolon will be consider as an empty statement and the
program may produce some nonsense. .

Nesting of for Loops

Nesting of loops, that is , one FOR statements within another FOR statement, is allowed in Java .
wehava used this concept in Program 7.2 . similarly, FOR loops can be nested as follows :

..

..

For (i = 1 ; i < 10 ; ++ i)
{

..............................

..............................

For (j = 1 ; j < ! = 5 ; ++ j)
{

......................................

...................................... inner loop

}
..
..

}

Page 59 of 69

US06CCSC01 Unit - I
OOP using Java

................................

................................

The loops should be properly indented so as to anable the reader to easily determine which
statements are continued with in each FOR statement.

A program segment to print a multiplication table using FOR loops is shown below :

...................................

...................................

For (row = 1 ; row < = ROWMAX : ++row)
{

For (column = 1 ; column < = COLMAX : ++column)
{

Y= row * column

System.out.print(“ + Y);
}

...

...

The outer loop controls the rows while the inner one controls the columns.
Program 7.4 illustrates the use of nested FOR loops

Programs displaying right angle triangle of @ using nested for loops

Class nested_loop
{

Public static void main (Stringargs [])
{

Intp , q ;
System.out.print(“ The right angle triangle of @ is shown below :\n”);
For (p = 1 ; p <=9; p ++)
{

For (q = 1 ; q < = p ; q++)
{

System.out.print(“ @ “);
}
System.out.println(“ “) ;

Page 60 of 69

US06CCSC01 Unit - I
OOP using Java

}

 }

}

Output of program
The right angle trangle of @ is shown below :
@
@@
 @@@
@@@@
@@@@@
@@@@@@
@@@@@@@
@@@@@@@@
@@@@@@@@@

In the above program , the outer for loop (with variable p) controls the number of rows
whereas the inner for loop (with variable q) controls the number of columns.

The Enhanced for LOOP

The enhanced for loop , also callled foreach loop , is an exended language features introduced
with the J2SE 5.0 release . this feature helps us to retrive the array of elements efficiently rather
than using array indexes. We can also use this features to eliminate the iterators in a for loop and
to retrive the elements from a collection .the enhanced for loop takes the following form :

For (type Identifier : Expression)
{

// statements ;
}

Where, TYPE represents the data type or object used ; IDENTIFIER refers to the name of a
variable ; and EXPRESSION is an instances of the java.lang . Iterable interface or an array.

Page 61 of 69

US06CCSC01 Unit - I
OOP using Java

For example , consider the following statements :

Intnumarry[3] = {56, 48 , 79 } ;
For (int k=0; k<=3; k++)
{

If (numarray [k1>50 &&numarray[k]<100)
{

System.out.printl(“ The selected value is “ + numarray [k]);
` }
}

Which is equivalent to the following code :

Intnumarray[3] = { 56, 48 , 79 } ;
For(int k : numarray)
{

If (k> 50 && k < 100)
{

System.out.println(“ the selected value is “ +k) ;
}

}

Thus , we can use the enchanced for loop to track the element of an array efficiently . in the same
manner , we can track the collection elements using the enhanced for loop as follows :

Stack samplestack = new stack ();
Samplestack.push(new Integer (56));
Samplestack.push(new Integer (48));
Samplestack.push(new Integer (79));
For (objectobj : samplestack)

{
System.out.println(obj);

}
Programs use of enhanced for loop to retrive the elements of arrays

Import java.util.*;

Class EnhanceForLoop
{

Public static void main (String args [])
{
System.out.println();
String
States[] = { “Tamilnadu”, “Andhrapradesh”, “UttarPradesh”, “Rajasthan”};
For (int i =0 ; i <states.length ; i++)

{

Page 62 of 69

US06CCSC01 Unit - I
OOP using Java

System.out.println(“ STANDARD FOR – LOOP : STATE NAME :”+
states[i]);

}

System.out.println();

for(String i:states) // enhanced for loop
{

System .out. Println (“ Enhanced for-loop : state name : “ + i);
}

System.out.println();

ArrayList< string > cities = new ArrayLists< string > ();

Cities.add(“Delhi”);
Cities.add(“Mumbai”);
Cities.add(“Calcutta”);
Cities.add(“Chennai”);
System.out.println();

For (int i =0 ; i <cities.size() ; i++)
{

 System .out.println(“ STANDARD FOR – LOOP : CITY NAME :”+
cities.get[i]));

}

System.out.println();

For (String city : cities) // enhanced for loop
 System .out.println(“ STANDARD FOR – LOOP : CITY NAME : ”+ city);

System.out.println();
System.out.println(“ In collections “);
System.out.println();

Printcollection(cities) ;
}

Public static<AnyType> void printcollection(Collection<AnyType> c)
{

For (AnyTypeval : c)
System.out.println (val)) ;
}

}

Page 63 of 69

US06CCSC01 Unit - I
OOP using Java

The output of the program is as follows

Standard for – loop : state name : Tamil Nadu
Standard for – loop : state name : Andhra Pradesh
Standard for – loop : state name : Uttar Pradesh
Standard for – loop : state name : Rajasthan

Enhanced for – loop : state name : Tamil Nadu
Enhanced for – loop : state name : Andhra Pradesh
Enhanced for – loop : state name : Uttar Pradesh
Enhanced for – loop : state name : Rajasthan

Standard for – loop : city name : Delhi
Standard for – loop : city name : Mumbai
Standard for – loop : city name : Calcutta
Standard for – loop : city name : Chennai

Enhanced for – loop : city name : Delhi
Enhanced for – loop : city name : Mumbai
Enhanced for – loop : city name : Calcutta
Enhanced for – loop : city name : Chennai

In Collections :
Delhi
Mumbai
Calcutta
Chennai

JUMPS in LOOPS
Loops perform a set of operations repeatedly until the control variable fails to satisfy the test
Condition .the number of times a loop is repeated is decided in advance and the test condition is
written to achieve this. Sometimes , when executing a loop it becomes desirable to skip a part of
the loop or to leave the loop as soon as a certain condition occurs . for example loop written for
reading and testing the names a 100 times must be terminated as soon as the desired name is
found . javapermits a jumps from one statement to the end or beginning of a loop as well as a
jump out of a loop .

Jumping Out of a Loop
An early exit from a loop can be accomplished by using the break statement. We have already
seen the use of the break in the switch statement . this statement can also be used within
while, do or for loops as illustrated in fig . 7.2 .

Page 64 of 69

US06CCSC01 Unit - I
OOP using Java

When the break statement is encounter inside a loop , the loop is immediately exited and the
programs with the statement immediately following the loop . when the loops are nested, the
break would only exit from the loop containing it . that is , the break will exit only a single loop .

Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the body of the loop under
certain conditions. For example , in processing of applications for some job , we might like to
exclude the processing of data of applicants belonging to a certain category. On reading the
category code of an applicant , a test is made to see whether his application should be considered
or not. If it is not be considered, the part of the programs loop that processes the application
details is skipped and the execution continues with the next loop operation .

Like the break statement, java supports another similar statements called the continue
statement .however, unlike the break which causes the loop to be terminated , the continue as
the name implies , causes the loop to be continued with the next iteration after skipping any
statements in between . the continue statement tells the compiler .” SKIP THE FOLLOWING
STATEMENTS AND CONTINUE WITH THE NEXT ITERATION “ .the format of the
continue statement is simply.

While (.)
{

 If (condition)
break;

}

 (a)

do
{

 If (condition)
break ;

} while (.)

 (b)

Page 65 of 69

US06CCSC01 Unit - I
OOP using Java

For (.)
{

 If (error)
break ;

}

 (c)

For (.)
{

For (.)
 {
.
if (condition)
break ;

 }

}
 (d)

Fig. Exiting a loop with break statement

The use of the continue statement in loops is illustrates in fig 7.3 .in while and do loops
,continue causes the control to go directly to the test condition and then to continue the iteration
process . in the case of for loop, the increment section of the loop is executed before the test
condition is evaluated .
While (test condition)do
{ {

If (.) if (....................)
Continue ; continue;
...
........................

} } while (test condition) ;
(a) (b)

For (initialization ; test condition ; increment)
{

................................
If (...........................)

Continue ;
................................
................................

}

Page 66 of 69

US06CCSC01 Unit - I
OOP using Java

(c)

Fig . By passing and continuing in loops

LABELLED LOOPS

In java , we can give a label to a block of statements. A label is any valid java variable name .to
give a label to a loop , place it before the loop with a colon at the end . example :

Loop 1 : for (.)
 {

......................................

......................................
}

..
A block of statements can be labelled as shown below :

Block 1: {
..................................
..................................

Block 2: {
.....................................
....................................

}

..................................

..................................
}

We have seen that a simple break statement causes the controls to jump outside the nearest loop
and a simple continue statement restarts the current loop . if we want to jump outside a nested
loops or to continue a loop that is outside the current one . then we may have to use the labelled
break and labelled continue statements . examples :

Outer : for (int m = 1; m < 11 ; m ++)
{

For (int n = 1 ; n < 11 ; n ++)
{
System.out.print(“ “ + m * n) ;
If (n == m)

Page 67 of 69

US06CCSC01 Unit - I
OOP using Java

Continue outer ;
}

}

Here , the continue statements terminates the inner loop when n = m and continues with the next
iteration of the outer loop (counting m) .

Another example :

Loop 1 : for (int i = 0 ; i < 10 ; i ++)
 {

While (x < 100)
{

Y = i * x;
If (Y> 500)

break loop1;
...................
...................

}

...................

...................
}

................................

Here , the label loop1 labels out of the loops . programs 7.6 illustrates the use of break and
continue statements .

Program : Use of continue and break statement

Class ContinueBreak
{

Public static void main (String args [])
{

Loop 1 : for (int i =1 ; i < 100 ; i ++)
{

System.out.printn (“ “);
If (i > = 10) break ;
For (int j = 1 ; j < 100 ; j ++)

Page 68 of 69

US06CCSC01 Unit - I
OOP using Java

{
System.out.println (“ * “);

}

If (j == i)
 Continue LOOP1;
}

}

System.out.println(“ TERMINATION BY BREAK “);
}

}

Program : produces the following output :

*
**

* * * * * * * *
* * * * * * * * *
Termination by BREAK

Page 69 of 69

