
US05CCSC03 Unit-1: Visual Programming through VB .NET
What is Microsoft .NET?

 Microsoft .NET (pronounced “dot net”) is a software component that runs on the
Windows operating system. .NET provides tools and libraries that enable developers to
create Windows software much faster and easier. .NET benefits end-users by providing
applications of higher capability, quality and security. The .NET Framework must be
installed on a user’s PC to run .NET applications.

 .NET technology provides the ability to quickly build, deploy, manage, and use
connected, security-enhanced solutions with Web services

What is VB.Net?
 Visual Basic .NET (VB.NET), is an object-oriented computer programming language that

can be viewed as an evolution of the classic Visual Basic (VB), which is implemented on
the .NET Framework

 It is the next generation of the visual Basic language.
 It supports OOP concepts such as abstraction, inheritance, polymorphism, and

aggregation.
.NET Framework Architecture :-

A programming infrastructure created by Microsoft for building, deploying, and running
applications and services that use .NET technologies, such as desktop applications and
Web services

1) It is a platform for application developers.
2) It is tiered, modular, and hierarchal.
3) It is a service or platform for building, deploying and running applications.
4) It consists of 2 main parts: Common language runtime and class libraries.
 The common language runtime is the bottom tier, the least abstracted.
 The .NET Framework is partitioned into modules, each with its own distinct

responsibility.
 The architectural layout of the .NET Framework is illustrated in following figure:

Page 1 of 29

http://en.wikipedia.org/wiki/Object-oriented_programming
http://www.c-sharpcorner.com/UploadFile/puranindia/net-framework-and-architecture/NETFrameworkArchitecture.aspx
http://searchcio-midmarket.techtarget.com/definition/polymorphism
http://searchcio-midmarket.techtarget.com/definition/inheritance
http://searchcio-midmarket.techtarget.com/definition/abstraction
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Visual_Basic
http://en.wikipedia.org/wiki/Programming_language

US05CCSC03 Unit-1: Visual Programming through VB .NET

Figure 1 An overview of the .NET architecture.

Here we examine the following key components of the .NET Framework:
1) Common Language Infrastructure (CLI): The purpose of the Common Language

Infrastructure (CLI) is to provide a language-neutral platform for application development
and execution, including functions for Exception handling, Garbage Collection, security, and
interoperability.

2) Common Language Runtime (CLR): The .NET Framework provides a runtime
environment called the Common Language Runtime or CLR (similar to the Java Virtual
Machine or JVM in Java), which handles the execution of code and provides useful services
for the implementation of the program.

The CLR is the execution engine for .NET applications and serves as the interface between .NET
applications and the operating system. The CLR provides many services such as:

 Loads and executes code
 Converts intermediate language to native machine code
 Manages memory and objects
 Enforces code and access security
 Handles exceptions
 Interfaces between managed code, COM objects, and DLLs
 Provides type-checking
 Provides code meta data (Reflection)
 Provides profiling, debugging, etc.
 Separates processes and memory

Page 2 of 29

http://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
http://en.wikipedia.org/wiki/Exception_handling

US05CCSC03 Unit-1: Visual Programming through VB .NET

3) Framework Class Library (FCL): It is also known as a base class library. The FCL is a
collection of over 7000 reusable classes, interfaces, and value types that enable .NET
applications to :

a) read and write files,
b) access databases,
c) process XML,
d) display a graphical user interface,
e) draw graphics,
f) use Web services, etc.

 The .Net Framework class library (FCL) organized in a hierarchical tree structure and it is
divided into Namespaces. Namespaces is a logical grouping of types for the purpose of
identification. Framework class library (FCL) provides the consistent base types that are
used across all .NET enabled languages. The Classes are accessed by namespaces, which
reside within Assemblies.

 Other name of FCL is BCL – Base Class Library
4) Common Type System (CTS)

1) CTS allows written in different programming to easily share to information.

2) A class written in C# should be equivalent to a class written in VB.NET.

3) Languages must agree on the meanings of these concepts before they can integrate

with one and other.

4) CLS forms a subset of Common type system this implies that all the rules that for

apply to Common type system apply to common language specification.

5) It defines rules that a programming language must follow to ensure that objects

written in different programming languages can interact which each other.

6) Common type system provide cross language integration.

 The common type system supports two general categories of types:
a) Value Type
b) Reference Type

a) Value Type: Stores directly data on stack. In built data type. For ex. Dim a as integer.
b) Reference Type: Store a reference to the value’s memory address, and are allocated on

the heap. For ex: dim obj as new oledbconnection.
 The Common Language Runtime (CLR) can load and execute the source code written in

any .Net language, only if the type is described in the Common Type System (CTS)

7) Common Language Specification (CLS)

The CLS is a common platform that integrates code and components from multiple .NET
programming languages. In other words, a .NET application can be written in multiple
programming languages with no extra work by the developer (though converting code between
languages can be tricky).

Page 3 of 29

http://vb.net-informations.com/framework/common_language_runtime.htm
http://vb.net-informations.com/framework/namespaces.htm

US05CCSC03 Unit-1: Visual Programming through VB .NET
.NET includes new object-oriented programming languages such as C#, Visual Basic .NET, J# (a
Java clone) and Managed C++. These languages, plus other experimental languages like F#, all
compile to the Common Language Specification and can work together in the same application.

 CLS includes basic Language features needed by almost all the application

 It serves as a guide for Library Writers and Compiler Writer.

 The Common Language Specification is a subset of the common type system (CTS).

 The common language specification is also important to application to who are writing

codes that will be used by other developers.

 CLS a series of basic rules that are required for language integration.

8) Microsoft Intermediate Language:
 When you compile your Visual Basic .NET source code, it is changed to an intermediate

language (IL) that the CLR and all other .NET development environments understand.
 All .NET languages compile code to this IL, which is known as Microsoft Intermediate

Language, MSIL, or IL.
 MSIL is a common language in the sense that the same programming tasks written with

different .NET languages produce the same IL code.
 At the IL level, all .NET code is the same regardless of whether it came from C++ or

Visual Basic.
 When a compiler produces Microsoft Intermediate Language (MSIL), it also produces

Metadata.
 The Microsoft Intermediate Language (MSIL) and Metadata are contained in a portable

executable (PE) file.
 Microsoft Intermediate Language (MSIL) includes instructions for loading, storing,

initializing, and calling methods on objects, as well as instructions for arithmetic and
logical operations, control flow, direct memory access, exception handling, and other
operations

Advantages :
 It offers cross− language integration, including cross− language inheritance, which

allows you to create a new class by deriving it from a base class written in another
language.

 It facilitates automatic memory management, known as garbage collection.
 compilation is much quicker
 It allows you to compile code once and then run it on any CPU and operating system

that supports the runtime.
Disadvantages:

 IL is not compiled to machine, so it can more easily be reverse engineered. Defense
mechanisms for handling this are likely to follow shortly after the .NET Framework is
officially released.

 While IL is further compiled to machine code, a tiny percentage of algorithms will
require a direct unwrapped access to system resources and hardware.

Page 4 of 29

http://vb.net-informations.com/framework/metadata.htm
http://en.wikipedia.org/wiki/Image:Overview_of_the_Common_Language_Infrastructure.png
http://research.microsoft.com/fsharp/
http://www.ondotnet.com/pub/a/dotnet/2003/01/13/intromcpp.html
http://msdn.microsoft.com/vjsharp/
http://msdn.microsoft.com/vbasic/
http://msdn.microsoft.com/vcsharp/

US05CCSC03 Unit-1: Visual Programming through VB .NET

 Figure: 2 shows what happens to your code from its inception in Visual Studio to
execution.

Figure 2 : Following the IL

The Just-In-Time Compiler
 Your code does not stay IL for long, however. It is the PE file, containing the IL that can

be distributed and placed with the CLR running on the .NET Framework on any
operating system for which the .NET Framework exists, because the IL is platform
independent. When you run the IL, however, it is compiled to native code for that
platform. Therefore, you are still running native code. The compilation to native code
occurs via another tool of the .NET Framework: the Just-In-Time (JIT) compiler.

 With the code compiled, it can run within the Framework and take advantage of low level
features such as memory management and security. The compiled code is native code for
the CPU on which the .NET Framework is running. A JIT compiler will be available for
each platform on which the .NET Framework runs, so you should always be getting
native code on any platform running the .NET Framework.

 Just-in-time compilation (JIT), also known as dynamic translation, is a method to
improve the runtime performance of computer programs. Historically, computer
programs had two modes of runtime operation, either interpreted or static (ahead-of-time)
compilation. Interpreted code is translated from a high-level language to a machine code
continuously during every execution, whereas statically compiled code is translated into
machine code before execution, and only requires this translation once.

 JIT compilers represent a hybrid approach, with translation occurring continuously, as
with interpreters, but with caching of translated code to minimize performance
degradation. It also offers other advantages over statically compiled code at development
time, such as handling of late-bound data types and the ability to enforce security
guarantees.

 The Common Language Runtime (CLR) provides various Just In Time compilers (JIT)
and each works on a different architecture depending on Operating System. That is why
the same Microsoft Intermediate Language (MSIL) can be executed on different
Operating Systems without rewrite the source code.

Page 5 of 29

http://vb.net-informations.com/framework/microsoft_intermediate_language.htm

US05CCSC03 Unit-1: Visual Programming through VB .NET
 Just In Time (JIT) compilation preserves memory and save time during initialization of

application.
 Just In Time (JIT) compilation is used to run at high speed, after an initial phase of slow

interpretation.
 Just In Time Compiler (JIT) code generally offers far better performance than

interpreters.
 There are three types of JIT:

1) Pre JIT
2) Econo JIT
3) Normal JIT

1) Pre JIT: It converts all the code in executable code in a single cycle and it is slow.
2) Econo JIT: It will convert the called executable code only. But it will convert code every

time when a code is called again.
3) Normal JIT: It will only convert the called code and will store in cache so that it will not

require converting code again. Normal JIT is fast.

.NET Languages
 .Net languages are CLI computer programming languages that may also optionally use

the .NET Framework Base Class Library and which produce programs that execute
within the Microsoft .NET Framework. Microsoft provides several such languages,
including C#, F#, Visual Basic .NET, and Managed C++.

 Generally .NET languages call into two main categories, TypeSafe Languages (such as
C#) and Dynamic Languages (Such as Python). Type Safe Languages are built on the
.NET Common Language Runtime and Dynamic Languages are built on top of the .NET
Dynamic Language Runtime. The .NET Framework is unique in its ability to provide this
flexibility.

 Regardless of which .NET language is used, the output of the language compiler is a
representation of the same logic in an intermediate language named Common
Intermediate Language (CIL).

 As the program is being executed by the CLR, the CLI code is compiled and cached, just
in time, to the machine code appropriate for the architecture on which the program is
running. This last compilation step is usually performed by the Common Language
Runtime component of the framework “just in time” (JIT) at the moment the program is
first invoked, though it can be manually performed at an earlier stage.

Microsoft Intermediate Language (MSIL)
 MSIL or IL(Intermediate Language) is machine independent code generated by .NET

framework after the compilation of program written in any language by user.
 MSIL or IL is now known as CIL(Common Intermediate Language).
 One of the more interesting aspects of .NET is that when you compile your code, you do

not compile to native code. But the compilation process translates your code into
something called Microsoft intermediate language, which is also called MSIL or just IL.

 The compiler also creates the necessary metadata and compiles it into the component.
This IL is CPU independent. After the IL and metadata are in a file, this compiled file is
called the PE, which stands for either portable executable or physical executable.
Because the PE contains your IL and metadata, it is therefore self-describing, eliminating
the need for a type library or interfaces specified with the Interface.

Page 6 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
.NET Assembly

 Whatever .NET language you create applications with, compilers generate an assembly,
which is a file containing .NET executable code and is composed essentially by two kinds
of elements: MSIL code and metadata.

 The .NET assembly is the standard for components developed with the Microsoft.NET.
Dot NET assemblies may or may not be executable, i.e., they might exist as the
executable (.exe) file or dynamic link library (DLL) file.

 All the .NET assemblies contain the definition of types, versioning information for the
type, meta-data, and manifest. The designers of .NET have worked a lot on the
component (assembly) resolution.

The structure of an assembly: Assemblies contain code that is executed by the Common
Language Runtime.

Figure 3 : A diagram of assembly
 Assemblies are made up of the following parts:

a) The assembly manifest
b) Type metadata
c) Microsoft Intermediate Language (MSIL) code

 The assembly manifest is where the details of the assembly are stored. The assembly is
stored within the DLL or EXE itself. Assemblies can either be single or multiple file
assemblies and, therefore, assembly manifests can either be stored in the assembly or as a
separate file. The assembly manifest also stores the version number of the assembly to
ensure that the application always uses the correct version.

 The metadata contains information on the types that are exposed by the assembly such as
security permission information, class and interface information, and other assembly
information.

Contents of an Assembly:
a) Assembly Manifest
b) Assembly Name
c) Version Information
d) Types
e) Cryptographic Hash
f) Security Permissions

An assembly does the following functions:
 It contains the code that the runtime executes.
 It forms a security boundary. An assembly is the unit at which permissions are requested

and granted.
 It forms a type boundary. Every type’s identity includes the name of the assembly at

which it resides.

Page 7 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
 It forms a reference scope boundary. The assembly's manifest contains assembly

metadata that is used for resolving types and satisfying resource requests.
 It forms a version boundary. The assembly is the smallest version able unit in the

common language runtime; all types and resources in the same assembly are versioned as
a unit.

 It forms a deployment unit. When an application starts, only the assemblies the
application initially calls must be present. Other assemblies, such as localization
resources or assemblies containing utility classes, can be retrieved on demand. This
allows applications to be kept simple and thin when first downloaded.

 It is a unit where side-by-side execution is supported.
There are two kinds of assemblies in .NET

a) Private
b) Shared

a) Private assemblies is the assembly which is used by application only, normally it resides
in your application folder directory.

b) Shared assemblies - It resides in GAC, so that anyone can use this assembly. Public
assemblies are always share the common functionalities with other applications.

 An assembly can be a single file or it may consist of the multiple files. In case of multi-
file, there is one master module containing the manifest while other assemblies exist as
non-manifest modules. A module in .NET is a sub part of a multi-file .NET assembly.
Assembly is one of the most interesting and extremely useful areas of .NET architecture
along with reflections and attributes, but unfortunately very few people take interest in
learning such theoretical looking topics.

The .NET Framework Namespaces
 . Net framework class library is a collection of namespaces.
 Namespace is a logical naming scheme for types that have related functionality.
 Namespace means nothing but a logical container or partition.
 For example: My computer contains C:, D:, E: and F: Each drive contains 1.txt file. The

file 1.txt is available in all the drive so it is require to specify the drive name to locate the
actual required file.

 At the top of the hierarchy is the System namespace.

 A namespace is just a grouping of related classes. It's a method of putting classes inside a
container so that they can be clearly distinguished from other classes with the same name.

 A namespace is a logical grouping rather than a physical grouping. The physical grouping
is accomplished by an assembly

 The .NET CLR consists of multiple namespaces, which are spread across many
assemblies. For example, ADO.NET is the set of classes located in the System.Data
namespace, and ASP.NET is the set of classes located in the System.Web namespace.
In the CLR, the classes and structures contained in each of the namespaces represent a
common theme of development responsibility.

 .NET Framework class library is collection of namespaces.
 Following table shows Common Namespaces supported by .NET

System Contains fundamental classes and base classes.
System.IO Contains classes for reading and writing data in file.
System.XML Contains classes work with XML.

Page 8 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
System.Windows.Forms Contains classes for windows-based applications.
System.Data Contains classes for the database connection.

Figure 4: .Net namespaces
VB.NET - Introduction

 Microsoft .NET is a software component that runs on the Windows operating system.
 .NET provides tools and libraries that enable developers to create Windows software

much faster and easier. .NET benefits end-users by providing applications of higher
capability, quality and security.

 This is how Microsoft describes it: “.NET is the Microsoft Web services strategy to
connect information, people, systems, and devices through software. Integrated across the
Microsoft platform, .NET technology provides the ability to quickly build, deploy,
manage, and use connected, security-enhanced solutions with Web services.

 VB .NET is an object-oriented computer programming language that can be viewed as an
evolution of the classic Visual Basic (VB), which is implemented on the .NET
Framework.

 Visual Basic 2008 version 9.0 was released together with the Microsoft .NET Framework
3.5

Why .NET?
 Interoperability between language and execution environment.
 Uniformity in schema or formats for Data exchange using XML, XSL (Extensible Style

Sheet Language)
 Extend or use existing code that is valid.
 Programming complexity of environment is reduced
 Multiplatform applications, automatic resource management simplification of application

deployment.
 It provides security like – code authenticity check, resources access authorizations,

declarative and imperative security and cryptographic security methods for embedding
into user’s application.

 The .Net platform is on integral component a new and simplified model for programming
and deploying application on the windows platform.

Page 9 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
 .Net development framework provides a new and simplified model for programming and

deploying applications on the windows platform.

Compilation and Execution

Figure 5: Compilation and Execution Process
Solutions and Projects

 In VB.Net project groups are known as solutions.
 By default, when you create a new project in VB.Net, then visual basic creates a new

solution first and then adds a project to that solution.
File Extensions used in VB.Net

 When you save a solution, the file extension is “.sln” and all projects in the solution are
saved with extension “.vbproj”.

 Most popular file extension is “.vb”

Types of projects:
The following list provides a comparison of Visual Basic 6.0 and Visual Basic .NET project
types.

Visual Basic 6.0 Visual Basic .NET
Standard EXE Windows Application
ActiveX DLL Class Library
ActiveX EXE Class Library
ActiveX Control Windows Control Library

ActiveX Document
No equivalent. Visual Basic .NET can interoperate with ActiveX
Documents.

DHTML Application No equivalent. Use ASP.NET Web Application.
IIS Application (Web
Class)

No equivalent. Use ASP.NET Web Application.

The Visual Basic projects you can create are as follows:
 Windows Application Windows standard thick client applications based on forms (EXE)
 Class Library For individual classes or collections of classes (DLL)
 Windows Control Library Controls and components for Windows Forms (classic)

Page 10 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
 . ASP.NET Web Application ASP.NET−based application composed of static or

dynamic HTML pages
 ASP.NET Web Service For Web services to be used by clients communicating over the

HTTP protocol
 Web Control Library Web−based controls for ASP.NET applications
 Console Application Your standard Console application
 Windows Service Create Windows services
 Empty Project Empty Windows application project
 Empty Web Project Empty Web server−based application

Visual Basic Integrated Development Environment:
Start Page

 User can use the start page to select from recent projects
 By default ‘Get Started’ item is selected in the start page.
 User can create new project or open existing project from recent project item.

Toolbars
 This feature is another handy aspect of the IDE.
 These appear near the top of the IDE.
 IDE displays tool tips, it becomes easy to know which button performs which operation.
 Toolbars provides a quick way to select menu item.

Graphical Designer
 VB.Net can display those elements which will look like at run time.
 Different types of graphical designers including.

a) windows form designers
b) web form designers
c) compact designers
d) XML designers

 From tools menu select options options dialog box will open from that select
“Window Form Designer” folder display possible options.

The Object Explorer
 This tool lets you look at all the members of an object at once
 The Object Explorer helps open up any mysterious objects that Visual Basic has added to

your code so you can see what's going on inside.
 To open the Object Explorer, select View Other Windows Object Explorer
 The Object Explorer shows all the objects in your program and gives you access to what's

going on in all of them.

Page 11 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET

Figure 6: VB .NET IDE
The Menu

 Visual Studio .NET's menu is dynamic, meaning that items will be added or removed
depending on what you are trying to do. The menu bar consist of the following options:

File: With this menu you can create a new project, open existing one, save the current
 project ,exit form the vb.net etc
Edit: The Edit menu provides access to the items you would expect: Undo, Redo, Cut, Copy,
Paste, and Delete.
View: The View menu provides quick access to the windows that make up the IDE, such as the
Solution Explorer, Properties window, Output window, Toolbox, etc.
Project: The Project menu allows you to add various extra files to your application.
Build: The Build menu becomes important when you have completed your application and want
to be able to run it without the use of the Visual Basic .NET environment.
Debug: The Debug menu allows you to start and stop running your application within the Visual
Basic .NET IDE. It also gives you access to the Visual Studio .NET debugger.
Data: The Data menu helps you use information that comes from a database. It only appears
when you are working with the visual part of your application ,not when you are writing code.
Format: The Format menu also only appears when you are working with the visual part of your
application. Items on the Format menu allow you to manipulate how the windows you create will
appear to the users of your application.

Page 12 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
Tools : The Tools menu has commands to configure the Visual Studio .NET IDE, as well as links
to other external tools that may have been installed.
Window: The commands on this menu allow you to change the physical layout of the windows
in the IDE.
Help: The Help menu provides access to the Visual Studio .NET documentation.

Code Designers
 You can use the tabs at the top center of the IDE to switch between graphical designer

and code designer
 From view menu, you can also switch between by using code (F7) and Designer

(Shift+F7) items.
 From solution Explorer, from the left side you can use top two buttons.
 At the top of code designer two drop down list boxes are available. The two drop-down

list boxes at the top of the code designer; the one on the left lets you select what object's
code you're working with, and the one on the right lets you select the part of the code that
you want to work on, letting you select between the declarations area, functions, Sub
procedures, and methods.

Figure 7: Code Designer Window
IntelliSense

 One useful feature of VB .NET code designers is Microsoft's IntelliSense. IntelliSense are
those boxes that open as you write your code, listing all the possible options and even
completing your typing for user.

 IntelliSense is made up of a number of options, including:
 List Members-Lists the members of an object.
 Parameter Info-Lists the arguments of procedure calls.
 Quick Info-Displays information in tool tips as the mouse rests on elements in your code.
 Complete Word-Completes typed words.
 Automatic Brace Matching-Adds parentheses or braces as needed.
 you can turn various parts of IntelliSense off if you want; just select the Tools Options

menu item, then select the Text Editor folder, then the Basic subfolder, and finally the
General item in the Basic subfolder.

Page 13 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET

Figure 8 : Intellisense
The Toolbox

 It is available on left side of IDE.
 It uses tabs to divide its contents into categories like marked Data, Components,

Windows Forms, and General.
 The Data, Components, Windows Forms, and General tabs appear when you're working

with a Windows form in a Windows form designer, but when you switch to a code
designer in the same project, all you'll see are General and Clipboard Ring in the toolbox.
When you're working on a Web form, you'll see Data, Web Forms, Components,
Components, HTML, Clipboard Ring, and General, and so on.

 The Data tab displays tools for creating datasets and making data connections.
 The Windows Forms tab displays tools for adding controls to Windows forms and so on.
 The General tab is empty by default, and is a place to store general components, controls,

and fragments of code in.

 The Solution Explorer
 It is available on right top corner of IDE
 This tool displays a hierarchy-with the solution at the top of the hierarchy, the projects

one step down in the hierarchy, and the items in each project as the next step down.
 You can set the properties of various items in a project by selecting them in the Solution

Explorer and then setting their properties in the properties window. And you can set
properties of solutions and projects by right-clicking them and selecting the Properties
item in the menu that appears, or you can select an item and click the properties button,
which is the right-most button at the top of the Solutions Explorer.

 User can switch between graphical and code designers by using the buttons that appear at
top left in the Solution Explorer

 You can right-click a solution and add a new project to it by selecting the AddNew
Project menu item in the popup menu that appears. And you can specify which of
multiple projects runs first-that is, is the startup project or projects-by right-clicking the
project and selecting the Set As Startup Object item, or by right-clicking the solution and
selecting the Set Startup Projects item.

 With this tool user can also add new item
 By clicking on see all button, solution explorer will shows all files available with current

project.

Page 14 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
 Refresh button is also available.

The Class View Window
 If you click the Class View tab under the Solution Explorer, you'll see the Class View

window, This view presents solutions and projects in terms of the classes they contain,
and the members of these classes.

 Using the Class View window gives you an easy way of jumping to a member of class
that you want to access quickly-just find it in the Class View window, and double-click it
to bring it up in a code designer.

The Properties Window
 The Properties window is divided into two columns of text, with the properties on the

left, and their settings on the right.
 From drop-down list box at top of properties window, user can select any object which is

available in current form.
 When you select a property, Visual Basic will give you an explanation of the property in

the panel at the bottom of the Properties window. And you can display the properties
alphabetically by clicking the second button from the left at the top of the Properties
window, or in categories by clicking the left-most button.

The Dynamic Help Window
 The window that shares the Properties window's space, however, is quite new-the

Dynamic Help window. Visual Basic .NET includes the usual Help menu with Contents,
Index, and Search items, of course, but it also now supports dynamic help, which looks
things up for you automatically. You can see the Dynamic Help window by clicking the
Dynamic Help tab under the Properties window.

 VB .NET looks up all kinds of help topics on the element you've selected automatically;
for example, I've selected a button on a Windows form, and dynamic help has responded
by displaying all kinds of helpful links to information on buttons.

The Server Explorer
 It is used to explore what’s going on in a server
 Using this tool you can drag and drop whole items onto windows forms from server

explorer. Ex. Database.
The Output Window

 At the bottom of the IDE, two tabs are available one is Output and other is Breakpoints
windows.

 From View menu Other Window Select Output Window.
 This window displays results of building and running programs.
 Using system Diagnostic.Debug.Write method user can send output to output window.
 Ex. System.Diagnostics.Debug.Write(“Hello”)

The Task List
 It is display from View Show Tasks All
 The Task List displays tasks that VB .NET assumes you still have to take care of, and

when you click a task, the corresponding location in a code designer appears.
The Command Window

 It is display from View Other Windows Command Window
 It opens the Command window
 This window is a little like the Immediate window in VB6, because you can enter

commands like File.AddNewProject here and VB .NET will display the Add New

Page 15 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
Project dialog box. However, this window is not exactly like the Immediate window,
because you can't enter Visual Basic code and have it executed.

Object Explorer Window
 The object explorer window allows us to view all the members of an object at once. It

lists all the objects in our code and gives us access to them. The image below displays an
object explorer window. You can view the object explorer window by selecting View-
>Other Windows-> Object Browser from the main menu.

Data Types:
 The following are the data type supported by VB.Net .
 Numeric Data Type(Short, Integer, Long, Single, Double, Decimal)
 Character Data Type (Char, String)
 Miscellaneous Data Type(Boolean , Byte, Date, Object)

Following table shows storage size in memory for the data type.
Type Storage Size
String 2 bytes
Char 2 bytes
Integer 4 bytes
Long 8 bytes
Boolean 2 bytes
Byte 1 byte
Short 2 bytes
Single 4 bytes
Double 8 bytes
Decimal 16 bytes
Date 8 bytes
Object 4 bytes

Variables:
 A variable is something that is used in a program to store data in memory.
 A variable has a name and a data type which determine the kind of data the variable can

store.
Variable declaration: Dim statement is used to declare a variable.
Syntax: Dim variablename [([subscript])] [As [New] datatype

Variablename : It is required. It specifies the name of variable which user wants to create.

Page 16 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
Subscript : It is optional. Subscript is used to specify the size of array when user declares an
array.
New: New keyboard enables creation of new object. If you use new when declaring the object
variable, a new instance of the object is created.
Type : The type specify the data type of the variables.
Ex: Dim a as integer, s1 as string

Variable name should follow the following rules:
 Begin with a letter or _.
 Must contain atleast one numeric digit or alphabetic character.
 Maximun 1023 characters are allowed.
 It must be unique in its scope.

 In VB.NET each variable contains default value depends on its data type.
 Default value for Numeric and Byte data type is 0(zero).
 Default value for Char data type is Binary 0(zero).
 Default value for all reference types like object, string, and arrays is Nothing.
 Default value for Boolean data type is False.
 Default value for Date data type is 12:00 AM of 1,1,0001.

Constant Declaration:
Declares and defines one or more constants.

Syntax: Const constantlist

Each constant has the following syntax and parts:

constantname[As datatype] = initializer

constantlist : Required. List of constants being declared in this statement. Constant
[, constant ...]
Constantname: It is required. It specifies the name of the constant.

Datatype: It specifies the type of constant.

Initialize: it is required. The value which is assigned to the constant. Once you initialize the
constant variable with a value it can never change.

Ex: Const pi as double = 3.24

Operators

 Visual Basic comes with many built-in operators that allow us to manipulate data. An
operator performs a function on one or more operands. For example, we add two
variables with the "+" addition operator and store the result in a third variable with the
"=" assignment operator like this: int x + int y = int z. The two variables (x ,y) are called
operands. There are different types of operators in Visual Basic and they are described
below in the order of their precedence.

 Operators may me Unary or Binary

 Unary used with a single operand for example Ans= -10

 Binary used with two operands for example Ans= 10 / 5

Page 17 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
 Operators also categorized in following categories:

Arithmetic Operators : Arithmetic operators are used to perform arithmetic operations that
involve calculation of numeric values. The table below summarizes them:

Operator Use

^ Exponentiation

- Negation (used to reverse the sign of the given value, exp -intValue)

* Multiplication

/ Division for ex a=11/5 then answer is 5.5

\ Integer Division for ex a=11\5 then answer is 5

Mod Modulus Arithmetic

+ Addition

- Subtraction

Concatenation Operators : Concatenation operators join multiple strings into a single string.
There are two concatenation operators, + and & as summarized below:

Operator Use

+ String Concatenation

& String Concatenation

Comparison Operators : A comparison operator compares operands and returns a logical value
based on whether the comparison is true or not. The table below summarizes them:

Operator Use

= Equality

<> Inequality

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

Logical / Bitwise Operators : The logical operators compare Boolean expressions and return a
Boolean result. In short, logical operators are expressions which return a true or false result over
a conditional expression. The table below summarizes them:

Operator Use

Not Negation

Page 18 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
And Conjunction

AndAlso Conjunction

Or Disjunction

OrElse Disjunction

Xor Disjunction

Type Conversion functions
 Type conversion is used for convert one data type to another
 There are two type of conversion : Implicit and Explicit.
 An Implicit Conversion does not require any special syntax in the source code.
 An Explicit Conversion requires function.
 For Example : Implicit Conversion

Dim a As Integer
Dim b As Double
a = 4499
b = a

 An explicit conversion requires function.
Function Name Convert Into
CBool Boolean
CByte Byte
CChar Char
CDate Date
CDbl or Val Double
CDec Decimal
CInt Integer
CLng Long
CObj Object
CShort Short
CSng Single
CStr String

 Following is common syntax for each type conversion function:
Syntax : Function_Name(argument)
For Example: Dim str As String

Dim no As Integer
str = “5”
no = Cint(str)

CTYPE function
 It uses to convert one type to another type.
 Instead of remember all conversion functions , we can use CTYPE function
 Execution is faster .

Syntax : Ctype(expression,Type name)
For Example : Dim no1 As Integer

Dim no2 As Double
no2 = 66.77
no1 = Ctype(no2,Integer)

Page 19 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
Boxing and Unboxing:

 Boxing and unboxing act like bridges between value type and reference types. When we
convert
value type to a reference type it’s termed as boxing. Unboxing is just vice-versa.

 Boxing: The conversion of a value type instance to an object.
 Unboxing : The conversion of an object instance to a value type.
 Example: Dim no As Integer= 10

 Dim obj As Object = no ---- Boxing
 Dim ans As Integer = CInt(obj) ---- Unboxing
Boxing conversions.
A boxing conversion permits any value-type to be implicitly converted to the type object or
to any interface-type implemented by the value-type.
Boxing a value of a value-type consists of allocating an object instance and copying the
value-type value into that instance.
For example any value-type G, the boxing class would be declared as follows:

Class vBox
Private value As G
Sub New(ByVal g As G)
value = g
End Sub 'New
End Class

BoxBoxing of a value v of type G now consists of executing the expression new G_Box(v),
and returning the resulting instance as a value of type object.
Thus, the statements
 Dim i As Integer = 12
 Dim box As Object = i

conceptually correspond to

Dim i As Integer = 12
Dim box = New int_Box(i)

Boxing classes like G_Box and int_Box above don't actually exist and the dynamic type of a
boxed value isn't actually a class type. Instead, a boxed value of type G has the dynamic
type G, and a dynamic type check using these operator can simply reference type G. For
example,
 Dim i As Integer = 12
 Dim box As Object = i
 If TypeOf box Is Integer Then
 Console.Write("Box contains an int")
 End If
will output the string "Box contains an integer" on the console.
Unboxing conversions.
 An unboxing conversion permits an explicit conversion from type object to any
value-type or from any interface-type to any value-type that implements the interface-type.
An unboxing operation consists of first checking that the object instance is a boxed value of
the given value-type, and then copying the value out of the instance.
Unboxing conversion of an object box to a value-type G consists of executing the expression
((G_Box)box).value.
Thus, the statements

 Dim box As Object = 12
 Dim i As Integer = CInt(box)
 conceptually correspond to
 Dim box = New int_Box(12)
 Dim i As Integer = CType(box, int_Box).value.

Page 20 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
For an unboxing conversion to a given value-type to succeed at run-time, the value of the
source argument must be a reference to an object that was previously created by boxing a
value of that value-type. If the source argument is null or a reference to an incompatible
object, an InvalidCastException is thrown.

Array:
 An ordered collection of same type of data having single variable name is known as

array. Each element of the array can be referenced by a numerical subscript.
 In VB.Net two types of arrays are:

a) Standard Array
b) Dynamic Array

Declaration Of Standard Array:
Syntax : Dim varname [(subscripts)] [As type]

WithEvents: This keyword is valid only in class modules. This keyword specifies that varname
is an object variable used to respond to events triggered by an ActiveX object.
VarName : The Varname specify the name of variable which you want to create.
Subscript : Subscript is used when you declare an array.
Type : The type specify the data type of the array variables. User can also include “To” keyword
in array declaration.
Ex : Dim n(5) As Integer.
 Dim s(3) As String.
 Dim n(1 to 4) As Integer.

Dynamic Array:
 In any C or C++ programming language user can not modify the size of the array. Once

we declared the size of array then it becomes fixed.
 In VB .NET we can increase the size of array.
 In some cases we may not know exactly the size of array at declaration time. We may

need to change the size of the array at runtime. So we can resize the array at any time by
using Redim statement.

 But with dynamic array we cannot change the dimension of the array.

Redim Statement: It reallocates storage space for array variables.
Syntax: ReDim [Preserve] name(boundlist) [, name(boundlist) …]
Preserve: It is optional. It is used to preserve the data in an existing array when user changes the
size of the last dimension.

Name: The name of the array variable.
Boundlist: It is required. It is dimensions of an array variable.
Example:

Dim a() As Integer
Private Sub cmdInput_Click()
 ReDim a(5) As Integer
 For i = LBound(a) To UBound(a)
 a(i) = InputBox("Enter elements:")
 Next

Page 21 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
End Sub
Private Sub cmdPrint_Click()
 ReDim Preserve a(3) As Integer
 'MsgBox LBound(a) & UBound(a)
 For i = LBound(a) To UBound(a)
 msgbox a(i)
 Next
End Sub

 String Functions :
1) Len: This function returns an integer containing the number of characters in a given string.
Syntax : Len(string)
String: Any valid string expression. If string contains Null, Null is returned.
Example:

S1=”hello”
Msgbox len(s1)

2) Mid: It returns a Variant (String) containing a specified number of characters from a string.
Syntax: Mid(string, start[, length])
The Mid function syntax has these named arguments:

Part Description

String Required. String expression from which characters are returned. If string contains
Null, Null is returned.

Start Required; Long. Character position in string at which the part to be taken begins. If
start is greater than the number of characters in string, Mid returns a zero-length
string ("").

Length Optional; Variant (Long). Number of characters to return. If omitted or if there are
fewer than length characters in the text (including the character at start), all
characters from the start position to the end of the string are returned.

Examples:

Dim MyString, FirstWord, LastWord
MyString = "Mid Function Demo" ' Create text string.
FirstWord = Mid(MyString, 1, 3) ' Returns "Mid".
LastWord = Mid(MyString, 14, 4) ' Returns "Demo".
3) Trim , Rtrim, Ltrim: It Returns a string that contains a copy of a specified string without

leading spaces (LTrim), without trailing spaces (RTrim), or without leading or trailing
spaces (Trim).

Syntax: Trim / Rtrim / Ltrim (string)
String: It is requires any valid String expression. If string equals Nothing, the function returns
an empty string.

Example:
S1= “ This is test “
Msgbox Trim(s1)
Msgbox Rtrim(s1)
Msgbox Ltrim(s1)

Page 22 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
4) Instr: It returns a Variant (Long) specifying the position of the first occurrence of one string

within another.

Syntax: InStr([start,]string1, string2[, compare])

The InStr function syntax has these arguments:

Part Description

Start Optional. Numeric expression that sets the starting position for each search. If
omitted, search begins at the first character position. If start contains Null, an
error occurs. The start argument is required if compare is specified.

string1 Required. String expression being searched.

string2 Required. String expression sought.

Compare Optional. Specifies the type of string comparison. If compare is Null, an error
occurs. If compare is omitted, the Option Compare setting determines the type
of comparison.

Settings: The Compare argument settings are:

Constant Value Description

Binary 0 Performs a binary comparison

Text 1 Performs a text comparison

Return Value

If InStr returns

String1 is zero length or Nothing 0

String2 is zero length or Nothing start

String2 is not found 0

String2 is found within String1 Position where match begins

Examples:

Dim SearchString, SearchChar, MyPos
SearchString ="XXpXXpXXPXXP" ' String to search in.
SearchChar = "P" ' Search for "P".
' A textual comparison starting at position 4. Returns 6.
MyPos = Instr(4, SearchString, SearchChar, 1)
' A binary comparison starting at position 1. Returns 9.

Page 23 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
MyPos = Instr(1, SearchString, SearchChar, 0)
' Comparison is binary by default (last argument is omitted).
MyPos = Instr(SearchString, SearchChar) ' Returns 9.

5) Lcase: It returns a String that has been converted to lowercase.

Syntax: LCase(string)

The required string argument is any valid string expression. If string contains Null, Null is
returned. Only uppercase letters are converted to lowercase; all lowercase letters and nonletter
characters remain unchanged.
Example:
Dim UpperCase, LowerCase
Uppercase = "Hello World 1234" ' String to convert.
Msgbox Lcase(UpperCase) ' Returns "hello world 1234"

6) Ucase: It returns a Variant (String) containing the specified string, converted to uppercase.

Syntax: UCase(string)

The required string argument is any valid string expression. If string contains Null, Null is
returned.
Only lowercase letters are converted to uppercase; all uppercase letters and nonletter characters
remain unchanged.
Example:
Dim LowerCase, UpperCase
LowerCase = "Hello World 1234" ' String to convert.
Msgbox UCase(LowerCase) ' Returns "HELLO WORLD 1234".

7) Asc: It returns an Integer representing the character code corresponding to the first letter in a
string.

Syntax: Asc(string)

The required string argument is any valid string expression. If String is a String expression, only
the first character of the string is used for input. If String is Nothing or contains no characters, an
error occurs.
Example: msgbox Asc("A")

8) Chr: It returns a String containing the character associated with the specified character code.

Syntax: Chr(charcode)
An Integer expression representing the code point, or character code, for the character. If
CharCode is outside the valid range, an error occur. The valid range for Chr is 0 through 255.
Examples:
Dim MyChar
MyChar = Chr(65) ' Returns A.

9) Space: It returns a string consisting of the specified number of spaces.

Page 24 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
Syntax: Space(number)

Number : It is required Integer expression. The number of spaces you want in the string.
Example: Msgbox “ Hi” & space(5) & “ How r u?”

10) Format: This function returns a string formatted according to instructions contained in a
format String expression.

Syntax: Format (Expression, style)

Expression : it is any valid expression.
Style: it is applied on specified expression
Example:
D1= #02/14/1989#
Msgbox format(d1,”DD-MM-YY”)

11) Strcomp: It returns -1, 0, or 1, based on the result of a string comparison.
Syntax: Strcomp(string1,string2[,compare])
String1 :Required. Any valid String expression.
String2 :Required. Any valid String expression.
Compare :Optional. Specifies the type of string comparison. If Compare is omitted, the Option
Compare setting determines the type of comparison.

The Compare argument settings are:

Return Value:The StrComp function has the following return values.

If StrComp returns

String1 sorts ahead of String2 -1

String1 is equal to String2 0

String1 sorts after String2 1

Example:
Dim TestStr1 As String = "ABCD"
Dim TestStr2 As String = "abcd"
Dim TestComp As Integer
' The two strings sort equally. Returns 0.
TestComp = StrComp(TestStr1, TestStr2, CompareMethod.Text)
' TestStr1 sorts after TestStr2. Returns -1.
TestComp = StrComp(TestStr1, TestStr2, CompareMethod.Binary)
' TestStr2 sorts before TestStr1. Returns 1.
TestComp = StrComp(TestStr2, TestStr1)

12) Left: It returns a Variant (String) containing a specified number of characters from the left
side of a string.

Page 25 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
Syntax: Left(str, length)

str :it is required String expression from which the rightmost characters are returned.
Length: It is required Numeric expression indicating how many characters to return. If 0, a zero-
length string ("") is returned. If greater than or equal to the number of characters in str, the entire
string is returned.

Examples:
Dim AnyString, MyStr
AnyString = "Hello World" ' Define string.
MyStr = Microsoft.VisualBasic.Left(AnyString, 1)
Msgbox Mystr ' Returns "H".

13) Right: It returns a string containing a specified number of characters from the right side of
a string.

Syntax: Right(str,length)

str :it is required String expression from which the rightmost characters are returned.
Length: It is required Numeric expression indicating how many characters to return. If 0, a zero-
length string ("") is returned. If greater than or equal to the number of characters in str, the entire
string is returned.

Example:
S1=”this is test”
Msgbox Micosoft.VisualBasic.Right(s1,3)

14) Replace: It returns a string in which a specified substring has been replaced with another
substring a specified number of times.

Syntax: Replace (Expression, Find, Replacement)

Expression :Required. String expression containing substring to replace.
Find :Required. Substring being searched for.
Replacement :Required. Replacement substring.

Example: S1= “Shopping List”

Msgbox Replace(s1, “o”,”I”)

Tostring with its Methods:

1) ToString.Concat: This method is used Concatenates three specified instances of String.

Syntax : System.String.Concat(str1,str2)

str1 : Parameter String

str2 : Parameter String

Example:
Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _

Page 26 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
ByVal e As System.EventArgs) Handles Button1.Click

 Dim str1 As String
 Dim str2 As String

 str1 = "Concat() "
 str2 = "Test"
 MsgBox(String.Concat(str1, str2))
 End Sub
End Class

2) String.copy : This method creates a new instance of String with the same value as a
specified String.

Syntac: System.String.Copy(str)

str : The argument String for Copy method
Example:
Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim str1 As String
 Dim str2 As String

 str1 = "VB.NET Copy() test"
 str2 = String.Copy(str1)
 MsgBox(str2)
 End Sub
End Class
3) String.Indexof: It returns the index of the first occurrence of the specified substring.

Syntax: System.String.IndexOf(str)

str - The parameter string to check its occurrences

If the parameter String occurred as a substring in the specified String then it returns position of
the first character of the substring. If it does not occur as a substring, -1 is returned.

Example:

Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim str As String
 str = "VB.NET TOP 10 BOOKS"
 MsgBox(str.IndexOf("BOOKS"))
 End Sub
End Class
4) String.substring: It returns a new string that is a substring of this string. The substring

begins at the specified given index and extended up to the given length.

Page 27 of 29

US05CCSC03 Unit-1: Visual Programming through VB .NET
Syntax: Substring(startIndex,length)

startIndex: The index of the start of the substring.

length: The number of characters in the substring.

Example:
Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim str As String
 Dim retString As String
 str = "This is substring test"
 retString = str.Substring(8, 9)
 MsgBox(retString)

 End Sub
End Class

5) String.format: VB.NET String Format method replace the argument Object into a text
equivalent System.Striing.

Syntax: System.Format(format, arg0)

String format : The format String

The format String Syntax is like {indexNumber:formatCharacter}

Object arg0 : The object to be formatted.

Examples:

Currency : String.Format("{0:c}", 10) will return $10.00

The currency symbol ($) displayed depends on the global locale settings.

Date : String.Format("Today's date is {0:D}", DateTime.Now)

You will get Today's date like : 01 January 2005

Time : String.Format("The current time is {0:T}", DateTime.Now)

You will get Current Time Like : 10:10:12

Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim dNum As Double

Page 28 of 29

http://vb.net-informations.com/

US05CCSC03 Unit-1: Visual Programming through VB .NET
 dNum = 32.123456789
 MsgBox("Formated String " & String.Format("{0:n4}", dNum))
 End Sub
End Class
6) String.ToUpper: This method uses the casing rules of the current culture to convert each

character in the current instance to its uppercase equivalent. If a character does not have an
uppercase equivalent, it is included unchanged in the returned string.

The ToUpper method is often used to convert a string to uppercase so that it can be used in a
case-insensitive comparison.

Syntax: string.ToUpper()

Example:
S1= “This is Test”
Msgbox s1.Toupper()

7) String.ToLower: This method does not modify the value of the current instance. Instead, it
returns a new string in which all characters in the current instance are converted to lowercase.

Syntax: string.tolower()

Example:
S1= “This is Test”
Msgbox s1.tolower()

8) String.Remove: Deletes all the characters from this string beginning at a specified position
and continuing through the last position.

Syntax: String.Remove(startIndex)

startIndex : The position to begin deleting characters.

Example:

S1=”abc---def”
Msgbox s1.remove(3)

Page 29 of 29

http://msdn.microsoft.com/en-us/library/system.string.toupper

	What is Microsoft .NET?
	What is VB.Net?
	Visual Basic .NET (VB.NET), is an object-oriented computer programming language that can be viewed as an evolution of the classic Visual Basic (VB), which is implemented on the .NET Framework
	It is the next generation of the visual Basic language.
	It supports OOP concepts such as abstraction, inheritance, polymorphism, and aggregation.
	.NET Framework Architecture :-
	A programming infrastructure created by Microsoft for building, deploying, and running applications and services that use .NET technologies, such as desktop applications and Web services
	System
	Contains fundamental classes and base classes.
	System.IO
	Contains classes for reading and writing data in file.
	System.XML
	Contains classes work with XML.
	System.Windows.Forms
	Contains classes for windows-based applications.
	System.Data
	Contains classes for the database connection.

	Examples:
	Return Value
	Examples:
	Example:
	Example:

	Return Value:The StrComp function has the following return values.
	Example: S1= “Shopping List”
	Syntax: String.Remove(startIndex)
	Example:

