
US05CBCA21 UNIT-IV

Page: 1

ADO.NET Basics

 ADO.NET provides its functionality in two groups of classes

 Those that are used to contain and manage data (such as DataSet, DataTable,
DataRow, and DataRelation)

 Those that are used to connect to a specific data source (such as Connection,
Command, and DataReader).

Connected Architecture of ADO.NET

The architecture of ADO.net, in which connection must be opened to access the data retrieved
from database is called as connected architecture. Connected architecture was built on the
classes: connection, command, datareader and transaction.

Connection : in connected architecture also the purpose of connection is to just establish a
connection to database and itself will not transfer any data.

 DataReader : DataReader is used to store the data retrieved by command object and make it
available for .net application. Data in DataReader is read only and within the DataReader you
can navigate only in forward direction and it also only one record at a time.

To access one by one record from the DataReader, call Read() method of the DataReader whose
return type is bool. When the next record was successfully read, the Read() method will return
true and otherwise returns false.

Disconnected Architecture in ADO.NET

The architecture of ADO.net in which data retrieved from database can be accessed even when
connection to database was closed is called as disconnected architecture. Disconnected
architecture of ADO.net was built on classes Connection, DataAdapter, CommandBuilder and
DataSet and DataView.

US05CBCA21 UNIT-IV

Page: 2

Connection: Connection object is used to establish a connection to database and connection
itself will not transfer any data.

DataAdapter: DataAdapter is used to transfer the data between database and dataset. It has
commands like select, insert, update and delete. Select command is used to retrieve data from
database and insert, update and delete commands are used to send changes to the data in dataset
to database. It needs a connection to transfer the data.

CommandBuilder: by default DataAdapter contains only the select command and it doesn’t
contain insert, update and delete commands. To create insert, update and delete commands for
the DataAdapter, CommandBuilder is used. It is used only to create these commands for the
DataAdapter and has no other purpose.

DataSet: DataSet is used to store the data retrieved from database by DataAdapter and make it
available for .net application.

To fill data in to dataset fill() method of dataadapter is used and has the following syntax.

Da.Fill(Ds,”TableName”);

When fill method was called, DataAdapter will open a connection to database, executes select
command, stores the data retrieved by select command in to DataSet and immediately closes the
connection.

As connection to database was closed, any changes to the data in dataset will not be directly sent
to the database and will be made only in the dataset. To send changes made to data in dataset to
the database, Update() method of the dataadapter is used that has the following syntax.

Da.Update(Ds,”Tablename”);

When Update method was called, dataadapter will again open the connection to database,
executes insert, update and delete commands to send changes in dataset to database and
immediately closes the connection. As connection is opened only when it is required and will be

US05CBCA21 UNIT-IV

Page: 3

automatically closed when it was not required, this architecture is called disconnected
architecture.

A dataset can contain data in multiple tables.

Data Providers:

The second group of classes exists in several different flavors.

Each set of data interaction Classes is called an ADO.NET data provider. Data providers are
customized so that each one uses the best-performing way of interacting with its data source.

For example, the SQL Server data provider is designed to work with SQL Server 7 or later.
Internally, it uses SQL Server’s TDS (tabular data stream) protocol for communicating, thus
guaranteeing the best possible performance. If you’re using Oracle, you’ll need to use the
Oracle provider classes instead.

It’s important to understand that you can use any data provider in almost the same way, with
almost the same code. The provider classes derive from the same base classes, implement the
same interfaces, and expose the same set of methods and properties.

In some cases, a data provider object will provide custom functionality that’s available only
with certain data sources, such as SQL Server’s ability to perform XML queries. However, the
basic members used for retrieving and modifying data are identical.

.NET includes the following four providers:
 SQL Server provider: Provides optimized access to a SQL Server database (version 7.0

or later)
 OLE DB provider: Provides access to any data source that has an OLE DB driver
 Oracle provider: Provides optimized access to an Oracle database (version 8i or later)
 ODBC provider: Provides access to any data source that has an ODBC (Open Database

Connectivity) driver

In addition, third-party developers and database vendors have released their own ADO.NET
providers, which follow the same conventions and can be used in the same way as those that
are included with the .NET Framework.

If you can’t find a suitable provider, you can use the OLE DB provider, as long as you have an
OLE DB driver for your data source. The OLE DB technology has been around for any years
as part of ADO, so most data sources provide an OLE DB driver including SQL Server,
Oracle, Access, MySQL, etc. In the rare situation that you can’t find a full provider or an OLE
DB driver, you can fall back on the ODBC provider, which works in conjunction with an
ODBC driver.

To help understand the different layers that come into play with ADO.NET, refer to Figure

US05CBCA21 UNIT-IV

Page: 4

The layers between code and the data source Data Namespaces
ADO.NET Namespaces Namespace Purpose
System.Data Contains fundamental classes with the core ADO.NET function-

ality. This includes ataSet and DataRelation, which allow you to
manipulate structured relational data. These classes are totally
independent of any specific type of database or the way you
connect to it.

System.Data.Common Not used directly in your code. These classes are used by other
data provider classes that inherit from them and provide versions
customized for a specific data source.

System.Data.OleDb Contains the classes you use to connect to an OLE DB data source
and execute commands, including OleDbConnection and
OleDbCommand.

System.Data.SqlClient Contains the classes you use to connect to a Microsoft SQL Server
database (version 7.0 or later) and execute commands. These
classes, such as SqlCommand and SqlConnection, provide all the
same properties and methods as their counterparts in the
System.Data.OleDb namespace. The only difference is that they are
optimized for SQL Server and provide better performance by
eliminating the extra OLE DB layer (and by connecting directly to
the optimized TDS interface).

System.Data.SqlTypes Contains structures for SQL Server–specific data types such as
SqlMoney and SqlDateTime. You can use these types to work with
SQL Server data types without needing to convert them into the
standard .NET equivalents (such as System.Decimal and
System.DateTime). These types aren’t required, but they do allow
you to avoid any potential rounding or conversion problems that
could adversely affect data.

System.Data.OracleClient Contains the classes you use to connect to an Oracle database and
execute commands, such as OracleConnection and

US05CBCA21 UNIT-IV

Page: 5

OracleCommand.
System.Data.Odbc Contains the classes you use to connect to a data source through an

ODBC driver and execute commands. These classes include
OdbcConnection and OdbcComman

The Data Provider Classes

On their own, the data classes can’t accomplish much. Technically, you could create data
objects by hand, build tables and rows in your code, and fill them with information. But in
most cases, the information you need is located in a data source such as a relational database.
To access this information, extract it, and insert it into the appropriate data objects, you need
the data provider classes described in this section. Remember, each one of these classes has a
database-specific implementation. That means you use a different, but essentially equivalent,
object depending on whether you’re interacting with SQL Server, Oracle, or any other
ADO.NET provider.

Regardless of which provider you use, your code will look almost the same. Often the only
differences will be the namespace that’s used and the name of the ADO.NET data access
classes.

Each provider designates its own prefix for naming classes.

Thus, the SQL Server provider includes SqlConnection and SqlCommand classes, and the
Oracle provider includes OracleConnection and OracleCommand classes.
 SQL Server

Data Provider
OLEDB Data
Provider

Oracle Data
Provider

Odbc Data
Provider

Connection SqlConnection OleDbConnection OracleConnection OdbcConnection
Command SqlCommand OleDbCommand OracleCommand OdbcCommand
DataReader SqlDataReader OleDbDataReader OracleDataReader OdbcDataReader
DataAdapter SqlDataAdapter OleDbDataAdapter OracleDataAdapter OdbcDataAdapter

Remember, though the underlying technical details differ, the classes are almost identical. The
only real differences are as follows:

 The names of the Connection, Command, DataReader, and DataAdapter classes are
different in order to help you distinguish them.

 The connection string (the information you use to connect to the database) differs
depending on what data source you’re using, where it’s located, and what type of
security you’re using.

 Occasionally, a provider may choose to add features, such as methods for specific
features or classes to represent specific data types. For example, the SQL Server
Command class includes a method for executing XML queries that aren’t part of the
SQL standard.

Connected Data Access

The easiest way to interact with a database is to use direct data access. When you use direct
data access, you’re in charge of building a SQL command and executing it. You use commands
to query, insert, update, and delete information.

When you query data with direct data access, you work with it for a brief period of time while
the database connection is open, and then close the connection as soon as possible. This is

US05CBCA21 UNIT-IV

Page: 6

different than disconnected data access, where you keep a copy of the data in the DataSet
object so you can work with it after the database connection has been closed.

The direct data model is well suited to ASP.NET web pages, which don’t need to keep a copy
of their data in memory for long periods of time. Remember, an ASP.NET web page is loaded
when the page is requested and shut down as soon as the response is returned to the user. That
means a page typically has a lifetime of only a few seconds.

To query information with simple data access, follow these steps:
1. Create Connection, Command, and DataReader objects.
2. Use the DataReader to retrieve information from the database, and display it in a

control on a web form.
3. Close your connection.
4. Send the page to the user. At this point, the information your user sees and the

information in the database no longer have any connection, and all the ADO .NET
objects have been destroyed.

To add or update information, follow these steps:
1. Create new Connect ion and Command objects.
2. Execute the Command (with the appropriate SQL statement).

Direct data access with ADO.NET

Before continuing, make sure you import the ADO.NET namespaces:

Using System.Data;
Using System.Data.SqlClient;

Creating a Connection

Before you can retrieve or update data, you need to make a connection to the data source.

You should also write your database code inside a Try/Catch error-handling structure so you
can respond if an error does occur, and make sure you close the connection even if you can’t
perform all your work.

When creating a Connection object, you need to specify a value for its ConnectionString
property. This ConnectionString defines all the information the computer needs to find the
data source, log in, and choose an initial database.

US05CBCA21 UNIT-IV

Page: 7

Here’s an example that uses a connection string to connect to SQL Server

SqlConnection myConnection=new SqlConnection();

myConnection.ConnectionString = "Data Source=localhost;" & _
"Initial Catalog=Pubs; Integrated Security=SSPI";

The Connection String

The connection string is actually a series of distinct pieces of information separated by
semicolons (;). Each separate piece of information is known as a connection string property.
The following list describes some of the most commonly used connection string properties,
including the three properties used in the preceding example:

Data source: This indicates the name of the server where the data source is located. If the
server is on the same computer that hosts the ASP.NET site, localhost is sufficient. The only
exception is if you’re using a named instance of SQL Server. For example, if you’ve installed
SQL Server 2005 Express Edition, you’ll need to use the data source localhost\SQL
EXPRESS, because the instance name is SQLEXPRESS. You’ll also see this written with a
period, as .\SQLEXPRESS, which is equivalent.

Initial catalog: This is the name of the database that this connection will be accessing. It’s only
the “initial” database because you can change it later by using the
Connection.ChangeDatabase() method.

Integrated security: This indicates you want to connect to SQL Server using the Windows user
account that’s running the web page code, provided you supply a value of SSPI (which stands
for Security Support Provider Interface). Alternatively, you can supply a user ID and password
that’s defined in the database for SQL Server authentication, although this method is less
secure and generally discouraged.

ConnectionTimeout: This determines how long your code will wait, in seconds, before
generating an error if it cannot establish a database connection. Our example connection string
doesn’t set the ConnectionTimeout, so the default of 15 seconds is used. You can use 0 to
specify no limit, but this is a bad idea. This means that, theoretically, the code could be held up
indefinitely while it attempts to contact the server.

Storing the Connection String

Typically, all the database code in your application will use the same connection string. For
that reason, it usually makes the most sense to store a connection string in a class member
variable or, even better, a configuration file.

You can also create a Connection object and supply the connection string in one step by using
a dedicated constructor:

SqlConnection myConnection=new SqlConnection(connectionString);
'myConnection.ConnectionString is now set to connectionString.

You don’t need to hard-code a connection string. The <connectionStrings> section of the
web.config file is a handy place to store your connection strings. Here’s an example:

<configuration>
 <connectionStrings>
 <add name="Pubs" connectionString=

US05CBCA21 UNIT-IV

Page: 8

"Data Source=localhost;Initial Catalog=Pubs;Integrated Security=SSPI"/>
 </connectionStrings>
 ...
</configuration>

You can then retrieve your connection string by name. First, import the

System.Web.Configuration namespace. Then, you can use code like this:

String connectionString = _
WebConfigurationManager.ConnectionStrings("Pubs").ConnectionString;

This approach helps to ensure all your web pages are using the same connection string. It also
makes it easy for you to change the connection string for an application, without needing to
edit the code in multiple pages. The examples in this chapter all store their connection strings
in the web.config file in this way.

Making the Connection

Once you’ve created your connection, you’re ready to use it.

Before you can perform any database operations, you need to explicitly open your connection:

myConnection.Open();

To verify that you have successfully connected to the database, you can try displaying some
basic connection information.

Here’s the code with basic error handling:

'Define the ADO.NET Connection object.
String conStr = _
 WebConfigurationManager.ConnectionStrings("Pubs").ConnectionString;
SqlConnection con=new SqlConnection(conStr);

Try
{
 'Try to open the connection.
 con.Open();
 MessageBox.Show(con.State.ToString());
Catch (Exception Err){
 'Handle an error by displaying the information.

MessageBox.Show("Error reading the database.");}
Finally{
 'Either way, make sure the connection is properly closed.
 '(Even if the connection wasn't opened successfully,
 'calling Close() won't cause an error.)
 Con.Close();}
}

The Command

Command is used to execute almost any SQL command from within the .net application. The
SQL command like insert, update, delete, select, create, alter, drop can be executed with
command object and you can also call stored procedures with the command object. Command
object has the following important properties.

 Connection: used to specify the connection to be used by the command object.

US05CBCA21 UNIT-IV

Page: 9

 CommandType : Used to specify the type of SQL command you want to execute. To
assign a value to this property, use the enumeration CommandType that has the members
Text, StoredProcedure and TableDirect. Text is the default and is set when you want to
execute ant SQL command with command object. StoredProcedure is set when you want
to call a stored procedure or function and TableDirect is set when you want to retrieve
data from the table directly by specifying the table name without writing a select
statement.

 CommandText : Used to specify the SQL statement you want to execute.
 Transaction: Used to associate a transaction object to the command object so that

the changes made to the database with command object can be committed or rollback.

Command object has the following important methods.

 ExecuteNonQuery() : Used to execute an SQL statement that doesn’t return any value
like insert, update and delete. Return type of this method is int and it returns the no. of
rows affected by the given statement.

 ExecuteScalar() : Used to execute an SQL statement and return a single value. When the
select statement executed by executescalar() method returns a row and multiple rows,
then the method will return the value of first column of first row returned by the query.
Return type of this method is object.

 ExecuteReader() : Used to execute a select a statement and return the rows returned by
the select statement as a DataReader. Return type of this method is DataReader.

The DataReader
 Once you’ve defined your command, you need to decide how you want to use it. The

simplest approach is to use a DataReader, which allows you to quickly retrieve all your
results.

 The DataReader uses a live connection and should be used quickly and then closed. The
DataReader is also extremely simple. It supports fast-forward-only read-only access to
your results, which is generally all you need when retrieving information.

 Before you can use a DataReader, make sure you’ve opened the connection:
con.Open();

 To create a DataReader, you use the ExecuteReader() method of the command object,
as shown here:
'You don't need the new keyword, as the Command will create the
‘DataReader.

String conStr = _
WebConfigurationManager.ConnectionStrings("Pubs").ConnectionString;
SqlConnection con=new SqlConnection(conStr);
SqlCommand cmd=new SqlCommand(_
 "SELECT * FROM Authors ORDER BY au_lname ", myConnection)
SqlDataReader rdr=new SqlDataReader();
rdr = cmd.ExecuteReader();
myReader.Read(); 'The first row in the result set is now available.

 These lines of code define a variable for a DataReader and then create it by executing
the command. Once you have the reader, you retrieve a single row at a time using the
Read()method:

myReader.Read()'The first row in the result set is now available.

 You can then access the values in the current row using the corresponding field names.
 To move to the next row, use the Read() method again. If this method returns True, a

US05CBCA21 UNIT-IV

Page: 10

row of information has been successfully retrieved.
 If it returns False, you’ve attempted to read past the end of your result set. There is no

way to move backward to a previous row.
 As soon as you’ve finished reading all the results you need, close the DataReader and

Connection:
Rdr.close();
Con.close();

Disconnected Data Access

When you use disconnected data access, you keep a copy of your data in memory using the
DataSet. You connect to the database just long enough to fetch your data and dump it into the
DataSet, and then you disconnect immediately.

There are a variety of good reasons to use the DataSet to hold onto data in memory. Here are a
few:

 You need to do something time-consuming with the data. By dumping it into a DataSet
first, you ensure that the database connection is kept open for as little time as possible.

 You want to use ASP.NET data binding to fill a web control (like a grid) with your
data. Although you can use the DataReader, it won’t work in all scenarios. The DataSet
approach is more straightforward.

 You want to navigate backward and forward through your data while you’re processing
it. This isn’t possible with the DataReader, which goes in one direction only—forward.

 You want to navigate from one table to another. Using the DataSet, you can store
several tables of information. You can even define relationships that allow you to
browse through them more efficiently.

 You want to save the data to a file for later use.
 You need a convenient package to send data from one component to another.
 You want to store some data so it can be used for future requests.

DataSets
 Datasets store data in a disconnected cache.
 The structure of a dataset is similar to that of a relational database; it exposes a

hierarchical object model of tables, rows, and columns.
 In addition, it contains constraints and relationships defined for the dataset.

DataAdapters

Data adapters are used to communicate between a data source and a dataset.

Adapters are used to exchange data between a data source and a dataset.

In many applications, this means reading data from a database into a dataset, and then writing
changed data from the dataset back to the database. However, a data adapter can move data
between any source and a dataset.

Visual Studio makes these data adapters available for use with databases:
 The OleDbDataAdapter object is suitable for use with any data source exposed by an

OLE DB provider.

US05CBCA21 UNIT-IV

Page: 11

 The SqlDataAdapter object is specific to SQL Server. Because it does not have to go
through an OLE DB layer, it is faster than the OleDbDataAdapter. However, it can only
be used with SQL Server 7.0 or later.

 The OdbcDataAdapter object is optimized for accessing ODBC data sources.
 The OracleDataAdapter object is optimized for accessing Oracle databases.

Every DataAdapter can hold four commands:
1. SelectCommand,
2. InsertCommand,
3. UpdateCommand, and
4. DeleteCommand.

This allows you to use a single DataAdapter object for multiple tasks. The Command object
supplied in the constructor is automatically assigned to the DataAdapter.SelectCommand
property.

The DataAdapter.Fill() method takes a DataSet and inserts one table of information. In this
case, the table is named Authors, but any name could be used. That name is used later to access
the appropriate table in the DataSet.

To access the individual DataRows, you can loop through the Rows collection of the
appropriate table. Each piece of information is accessed using the field name, as it was with the
DataReader.

Selecting Disconnected Data

With disconnected data access, a copy of the data is retained in memory while your code is
running.

You fill the DataSet in much the same way that you connect a DataReader. However, although
the DataReader holds a live connection, information in the DataSet is always disconnected.

The following example shows how you could rewrite the FillAuthorList() method from the
earlier example to use a DataSet instead of a DataReader.

private void Demo()

http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqldataadapter%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.odbc.odbcdataadapter%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.oracleclient.oracledataadapter%28v=vs.71%29.aspx

US05CBCA21 UNIT-IV

Page: 12

{

 // Define ADO.NET objects.

 string selstr;

 selstr = "SELECT au_lname, au_fname, au_id FROM Authors";

 SqlConnection con = new SqlConnection(connectionString);

 SqlCommand cmd = new SqlCommand(selectSQL, con);

 SqlDataAdapter dap = new SqlDataAdapter(cmd);

 DataSet ds = new DataSet();

 // Try to open database and read information.

 try

 {

 con.Open();

 // All the information in transferred with one command.

 // This command creates a new DataTable (named Authors)

 // inside the DataSet.

 dap.Fill(ds, "Authors");

 }

 catch (Exception err)

 {

 Interaction.MsgBox("Error");

 }

 finally

 {

 con.Close();

 }

}

Data Binding

 The basic principle of data binding is this: you tell a control where to find your data and how

US05CBCA21 UNIT-IV

Page: 13

you want it displayed, and the control handles the rest of the details.

ASP.NET data binding, has little in common with direct data binding. ASP.NET data binding
works in one direction only. Information moves from a data object into a control. Then the data
objects are thrown away, and the page is sent to the client. If the user modifies the data in a
data-bound control, your program can update the corresponding record in the database, but
nothing happens automatically.

ASP.NET data binding is much more flexible than old-style data binding. Many of the most
powerful data binding controls, such as the GridView and DetailsView, give you
unprecedented control over the presentation of your data, allowing you to format it, change its
layout, embed it in other ASP.NET controls, and so on.

Types of ASP.NET Data Binding
1. single-value binding and
2. repeated-value binding.

Single-value data binding is by far the simpler of the two, whereas repeated-value binding
provides the foundation for the most advanced ASP.NET data controls.

1. Single-Value, or “Simple,” Data Binding:

You can use single-value data binding to add information anywhere on an ASP.NET page. You
can even place information into a control property or as plain text inside an HTML tag.

Single-value data binding doesn’t necessarily have anything to do with ADO.NET. Instead,
single-value data binding allows you to take a variable, a property, or an expression and insert
it dynamically into a page. Single-value binding also helps you create templates for the rich
data controls.

2. Repeated-Value, or “List,” Binding

Repeated-value data binding allows you to display an entire table.

Unlike single-value data binding, this type of data binding requires a special control that
supports it. Typically, this will be a list control such as CheckBoxList or List Box, but it can
also be a much more sophisticated control such as the GridView.

You’ll know that a control supports repeated-value data binding if it provides a DataSource
property. As with single-value binding, repeated-value binding doesn’t necessarily need to use
data from a database, and it doesn’t have to use the ADO.NET objects. For example, you can
use repeated-value binding to bind data from a collection or an array.

How Data Binding Works

Data binding works a little differently in single-value and repeated-value binding.

To use single-value binding, you must insert a data binding expression into the markup in the
.aspx file (not the code-behind file).

To use repeated-value binding, you must set one or more properties of a data control.
Typically, you’ll perform this initialization when the Page.Load event fires.

Once you specify data binding, you need to activate it. You accomplish this task by calling the
DataBind() method. The DataBind() method is a basic piece of functionality supplied in the

US05CBCA21 UNIT-IV

Page: 14

Control class. It automatically binds a control and any child controls that it contains. With
repeated-value binding, you can use the DataBind() method of the specific list control you’re
using. Alternatively, you can bind the whole page at once by calling the DataBind() method
of the current Page object. Once you call this method, all the data binding expressions in the
page are evaluated and replaced with the specified value.

Typically, you call the DataBind() method in the Page.Load event handler. If you forget to
use it, ASP.NET will ignore your data binding expressions, and the client will receive a page
that contains empty values.

Data Source Controls

Data source controls allow you to create data-bound pages without writing any data access
code at all.

The data source controls include any control that implements the IDataSource interface. The
.NET Framework includes the following data source controls:

 SqlDataSource: This data source allows you to connect to any data source that has an
ADO.NET data provider. This includes SQL Server, Oracle, and OLE DB or ODBC
data sources. When using this data source, you don’t need to write the data access code.

 AccessDataSource: This data source allows you to read and write the data in an Access
database file (.mdb).

 ObjectDataSource : This data source allows you to connect to a custom data access
class. This is the preferred approach for large-scale professional web applications, but it
forces you to write much more code.

 XmlDataSource: This data source allows you to connect to an XML file.
 SiteMapDataSource: This data source allows you to connect to a .sitemap file that

describes the navigational structure of your website.
You can find all the data source controls in the Data tab of the Toolbox in Visual Studio. When
you drop a data source control onto your web page, it shows up as a gray box in Visual Studio.
However, this box won’t appear when you run your web application and request the page.

The Data Controls:

The rich data controls are quite a bit different from the simple list controls—for one thing, they

US05CBCA21 UNIT-IV

Page: 15

are designed exclusively for data binding. They also have the ability to display more than one
field at a time, often in a table-based layout, or according to what you’ve defined. They also
support higher-level features such as selecting, editing, and sorting.

The rich data controls include the following:
 GridView: The GridView is an all-purpose grid control for showing large tables of

information. The GridView is the heavyweight of ASP.NET data controls.
 DetailsView: The DetailsView is ideal for showing a single record at a time, in a table

that has one row per field. The DetailsView also supports editing.
 FormView: Like the DetailsView, the FormView shows a single record at a time and

supports editing. The difference is that the FormView is based on templates, which
allow you to combine fields in a flexible layout that doesn’t need to be table-based.

The GridView:

The GridView is an extremely flexible grid control that displays a multicolumn table. Each
record in your data source becomes a separate row in the grid. Each field in the record becomes
a separate column in the grid.

The GridView is the most powerful of the three rich data controls because it comes equipped
with the most ready-made functionality. This functionality includes features for automatic
paging, sorting, selecting, and editing. The GridView is also the only data control you’ll
consider in this chapter that can show more than one record at a time.

Automatically Generating Columns

The GridView provides a DataSource property for the data object you want to display. Once
you’ve set the DataSource property, you call the DataBind() method to perform the data
binding and display each record in the GridView.

However, the GridView doesn’t provide properties, such as DataTextField and
DataValueField, that allow you t o choose what column you want to display. That’s because
the GridView automatically generates a column for every field, as long as the
AutoGenerateColumns property is True (which is the default).

Here’s all you need to create a basic grid with one column for each field:

<asp:GridView ID="GridView1" runat="server" />

Once you’ve added this GridView tag to your page, you can fill it with data. Here’s an
example that performs a query using the AD O.NET objects and binds the retrieved DataSet:

protected void Page_Load(object sender, EventArgs e)

{

 // Define the ADO.NET objects.

 string connectionString =
WebConfigurationManager.ConnectionStrings("Northwind").ConnectionStri
ng;

string selectSQL = "SELECT ProductID, ProductName, UnitPrice FROM
Products";

US05CBCA21 UNIT-IV

Page: 16

 SqlConnection con = new SqlConnection(connectionString);

 SqlCommand cmd = new SqlCommand(selectSQL, con);

 SqlDataAdapter adapter = new SqlDataAdapter(cmd);

 // Fill the DataSet.

 DataSet ds = new DataSet();

 adapter.Fill(ds, "Products");

 // Perform the binding.

 GridView1.DataSource = ds;

 GridView1.DataBind();

}

Remember, in order for this code to work you must have a connection string named Northwind
in the web.config file.

Of course, you don’t need to write this data access code by hand, you can use the
SqlDataSource control to define your query. You can then link that query directly to your data
control, and ASP.NET will take care of the entire data binding process.

Here’s how you would define a SqlDataSource to perform the query shown in the example:

<asp:SqlDataSource ID="sourceProducts" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT ProductID, ProductName, UnitPrice FROM
Products" />
Next, set the GridView.DataSourceID property to link the data
source to your grid:
<asp:GridView ID="GridView1" runat="server" DataSourceID= " source
Products" />

Now you don’t have to write any code to execute the query and bind the DataSet. Using the
SqlDataSource has positive and negative sides. Although it gives you less control, it
streamlines your code quite a bit, and it allows you to remove all the database details from
your code-behind class.

Defining Columns

By default, the GridView.AutoGenerateColumns property is True, and the GridView creates a
column for each field in the bound DataTable. This automatic column generation is good for
creating quick test pages, but it doesn’t give you the flexibility you’ll usually want. For
example, what if you want to hide columns, change their order, or configure some aspect of
their display, such as the formatting or heading text? In all these cases, you need to set Auto
GenerateColumns to False and define the columns in the <Columns> section of the GridView
control tag. Each column can be any of several column types:

Class Description
BoundField This column displays t ext from a field in the data source.
ButtonField This column displays a button in this grid column.
CheckBoxField This column displays a check box in this grid column. It’s

US05CBCA21 UNIT-IV

Page: 17

used automatically for true/false fields.
CommandField This column provides selection or editing buttons.
HyperLinkField This column displays its contents (a field from the data source

or static text) as a hyperlink.
ImageField This column displays image data from a binary field.
TemplateField This column allows you to specify multiple fields, custom

controls, and arbitrary HTML using a custom template. It
gives you the highest degree of control but requires the most
work

The most basic column type is BoundField, which binds to one field in the data object. For
example, here’s the definition for a single data-bound column that displays the ProductID
field:

<asp:BoundField DataField="ProductID" HeaderText="ID" />

This tag demonstrates how you can change the header text at the top of a column from
ProductID to just ID.

Here’s a complete GridView declaration with explicit columns:
<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceProducts"
 AutoGenerateColumns="False">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ID" />
 <asp:BoundField DataField="ProductName" HeaderText="Product Name" />
 <asp:BoundField DataField="UnitPrice" HeaderText="Price" />
 </Columns>
</asp:GridView>

Explicitly defining columns has several advantages:
 You can easily fine-tune your column order, column headings, and other details by

tweaking the properties of your column object.
 You can hide columns you don’t want to show by removing the column tag. (Don’t

overuse this technique, because it’s better to reduce the amount of data you’re
retrieving if you don’t intend to display it.)

 You’ll see your columns in the design environment (in Visual Studio). With
automatically generated columns, the GridView simply shows a few generic
placeholder columns.

 You can add extra columns to the mix for selecting, editing, and more.

This example shows how you can use this approach t o change the header text. However, the
HeaderText property isn’t the only column property you can change in a column. In the next
section, you’ll learn about a few more.

Configuring Columns

When you explicitly declare a bound field, you have the opportunity to set other properties.

BoundField Properties
Property Description
DataField Identifies the field (by name) that you want to display in

US05CBCA21 UNIT-IV

Page: 18

this column.
DataFormatString Formats the field. This is useful for getting the right

representation of numbers and dates.
ApplyFormatInEditMode If True, the DataFormat string is used to format the value

even when the value appears in a text box in edit mode.
The default is False, which means the underlying value
will be used (such as 1143.02 instead of $1,143.02).

FooterText, HeaderText, and
HeaderImageUrl

 Sets the text in the header and footer region of the grid if
this grid has a header (GridView.ShowHeader is True) and
footer (GridView.ShowFooter is True). The header is most
commonly used for a descriptive label such as the field
name; the footer can contain a dynamically calculated
value such as a summary. To show an image in the header
instead of text, set the HeaderI mageUrl property

ReadOnly If True, it prevents the value for this column from being
changed in edit mode. No edit control will be provided.
Primary key fields are often read-only.

InsertVisible If True, it prevents the value for this column from being
set in insert mode. If you want a column value to be set
programmatically or based on a default value defined in
the database, you can use this feature.

Visible If False, the column won’t be visible in the page (and no
HTML will be rendered for it). This gives you a
convenient way to programmatically hide or show specific
columns, changing the overall view of the data.

SortExpression Sorts your results based on one or more columns.
HtmlEncode If True (the default), all text will be HTML encoded to

prevent special characters from mangling the page. You
could disable HTML encoding if you want to embed a
working HTML tag (such as a hyperlink), but this
approach isn’t safe. It’s always a better idea to use HTML
encoding on all values and provide other functionality by
reacting to GridView selection events.

NullDisplayText Displays the text that will be shown for a null value. The
default is an empty string, although you could change this
to a hardcoded value, such as “(not specified).”

ConvertEmptyStringToNull If True, converts all empty strings to null values (and uses
the NullDisplayText to display them).

ControlStyle, HeaderStyle
,FooterStyle, and ItemStyle

 Configures the appearance for just this column, overriding
the styles for the row.

Generating Columns with Visual Studio

We can create a GridView that shows all your fields by setting the AutoGenerateColumns
property to True.

Unfortunately, when you use this approach you lose the ability to control any of the details
over your columns, including their order, formatting, sorting, and so on. To configure these

US05CBCA21 UNIT-IV

Page: 19

details, you need to set AutoGenerateColumns to False and define your columns explicitly.
This requires more work, and it’s a bit tedious.

You can use explicit columns but get Visual Studio to create the column tags for you
automatically. Here’s how it works: select the GridView control, and click Refresh Schema in
the smart tag. At this point, Visual Studio will retrieve the basic schema information from your
data source (for example, the names and data type of each column) and then add one
<BoundField> element for each field.

Once you’ve created your columns, you can also use some helpful design-time support to
configure the properties of each column (rather than editing the column tag by hand). To do
this, select the GridView, and click the ellipsis (. . .) next to the Columns property in the
Properties window. You’ll see a Fields dialog box that lets you add, remove, and refine your
columns.

Now that you understand the underpinnings of the GridView, you’ve still only started to
explore its higher-level features. In the following sections, you’ll tackle these topics:

 Formatting: How to format rows and data values
 Selecting: How t o let users select a row in the GridView and respond accordingly
 Editing: How to let users commit record updates, inserts, and deletes
 Sorting: How to dynamically reorder the GridView in response to clicks on a column

header
 Paging: How to divide a large result set into multiple pages of data
 Templates: How to take complete control of designing, formatting, and editing by

defining templates

Formatting the GridView

Formatting consists of several related tasks. First, you want to ensure that dates, currencies,
and other number values are presented in the appropriate way. You handle this job with the
DataFormatString property. Next, you’ll want to apply the perfect mix of colors, fonts,
borders, and alignment options to each aspect of the grid, from headers to data items. The
GridView supports these features through styles. Finally, you can intercept events, examine
row data, and apply formatting to specific values programmatically. In the following sections,
you’ll consider each of these techniques.

The GridView also exposes several self-explanatory formatting properties that aren’t covered
here. These include GridLines (for adding or hiding table borders), CellPadding and
CellSpacing (for controlling the overall spacing between cells), and Caption and
CaptionAlign (for adding a title to the top of the grid).

Formatting Fields

Each BoundField column provides a DataFormatString property you can use to configure the
appearance of numbers and dates using a format string. Format strings generally consist of a
placeholder and a format indicator, which are wrapped inside curly brackets. A typical format
string looks something like this:
{0:C}

In this case, the 0 represents the value that will be formatted, and the letter indicates a

US05CBCA21 UNIT-IV

Page: 20

predetermined format style. Here, C means currency format, which formats a number as an
amount of money (s o 3400.34 becomes $3,400.34). Here’s a column that uses this format
string:

<asp:BoundField DataField="UnitPrice" HeaderText="Price"
 DataFormatString="{0:C}" />

Table shows some of the other formatting options for numeric values.

Type Format String Example
Currency {0:C} $1,234.50. Brackets indicate negative values:

($1,234.50). The currency sign is locale-specific.
Scientific
(Exponential)

{0:E} 1.234.50E+004

Percentage {0:P} 45.6%
Fixed Decimal {0:F?} Depends on the number of decimal places you set.

{0: F3} would be 123.400. {0;F0} would be 123.

You can find other examples in the MSDN Help. For date or time values, you’ll find an
extensive list. For example, if you want to write the BirthDate value in the format
month/day/year (as in 12/30/08), you use the following column:

<asp:BoundField DataField="BirthDate" HeaderText="Birth Date"
 DataFormatString="{0:MM/dd/yy}" />

Time and Date Format Strings

Type Format
String

 Syntax Example

Short Date {0:d} M/d/yyyy 10/30/2008
Long Date {0:D} dddd, MMMM dd, yyyy Monday, January 30,

2008
Long Date and
Short Time

{0:f} dddd, M MMM dd, yyyy
HH:mm aa

Monday, January 30,
2008 10:00 AM

Long Date and
Long Time

{0:F} dddd, M MMM dd, yyyy
HH:mm:ss aa

Monday, January 30 2008
10:00:23 AM

ISO Sortable
Standard

{0:s} yyyy-MM-ddTHH:mm:ss 2008-01-30T10:00:23

Month and Day {0:M } MMMM dd January 30
General {0:G} M/d/yyyy HH:mm:ss aa 10/30/2008 10:00:23 AM

The format characters are not specific to the GridView. You can use them with other controls,
with data-bound expressions in templates (as you’ll see later in the “Using GridView
Templates” section), and as parameters for many methods. For example, the Decimal and
DateTime types expose their own ToString() methods that accept a format string, allowing
you to format values manually.

Configuring Styles with Visual Studio

There’s no reason to code style properties by hand in the GridView control tag, because the

US05CBCA21 UNIT-IV

Page: 21

GridView provides rich design-time support. To set style properties, you can use the Properties
window to modify the style properties. For example, to configure the font of t he header,
expand the HeaderStyle property to show the nested Font property, and set that. The only
limitation of this approach is that it doesn’t allow you to set the style for individual columns—
if you need that trick, you must first call up the Fields dialog box (shown in Figure 17-2) b y
editing the Columns property. Then, select the appropriate column, and set the style properties
accordingly.

You can even set a combination of styles using a preset theme by clicking the Auto Format
link in the GridView smart tag. Figure shows the Auto Format dialog box with some of the
preset styles you can choose. Select Remove Formatting to clear all the style settings.

Once you’ve chosen and inserted styles into your GridView tag, you can tweak them by hand
or by using the Properties window.

Selecting a GridView Row

Selecting an item refers to the ability to click a row and have it change color (or become
highlighted) to indicate that the user is currently working with this record.

At the same time, you might want to display additional information about the record in another
control. With the GridView, selection happens almost automatically once you set up a few
basics.

Before you can use item selection, you must define a different style for selected items. The
SelectedRowStyle determines how the selected row or cell will appear. If you don’t set this
style, it will default to the same value as RowStyle, which means the user won’t be able to tell
which row is currently selected. Usually, selected rows will have a different BackColor
property.

You can determine which row is selected in a GridView control by using any of the following
properties:

 SelectedDataKey Returns the DataKey object associated with the selected row (useful
when there are multiple data keys).

US05CBCA21 UNIT-IV

Page: 22

 SelectedIndex Returns the (zero-based) index of the selected row.
 SelectedValue Returns the data key associated with the selected row.
 SelectedRow Returns the actual row (GridViewRow object) associated with the selected

row.

In most cases, you use the SelectedValue property to determine the value associated with a
particular row. The SelectedValue property returns the data key associated with a row.

To find out what item is currently selected (or to change the selection), you can use the
GridView.SelectedIndex property. It will be -1 if no item is currently selected. Also, you
can react to the SelectedIndexChanged event to handle any additional related tasks.

Adding a Select Button

You simply need to add a button with the ShowSelectButton property set to True. ASP.NET
can render the CommandField as a hyperlink, a button, or a fixed image. You choose the type
using the ButtonType property. You can then specify the text through the SelectText
property or specify the link to the image through the SelectImageUrl property.

Here’s an example that displays a select button:

<asp:CommandField ShowSelectButton="True" ButtonType="Button"
 SelectText="Select" />

And here’s an example that shows a small clickable icon:

<asp:CommandField ShowSelectButton="True" ButtonType="Image"
 SelectImageUrl="select.gif" />

Using a Data Field as a Select Button

You can also turn an existing column into a link. This technique is commonly implemented to
allow users to select rows in a table by the unique ID value.

To use this technique, remove the CommandField column, and add a ButtonField column
instead. Then, set the DataTextField to the name of the field you want to use.

<asp:ButtonField ButtonType="Button" DataTextField="ProductID" />

This field will be underlined and turned into a button.

<asp:ButtonField CommandName="Select" ButtonType="Button"
 DataTextField="ProductID" />

Now clicking the data field automatically selects the record.

Using Selection to Create Master-Details Pages

As demonstrated in the previous chapter, you can draw a value out of a control and use it to
perform a query in your data source. For example, you can take the currently selected item in a
list, and feed that value to a SqlDataSource that gets more information for the corresponding
record.

This builds master-details pages—pages that let you navigate relationships in a database.

A typical master-details page has two GridView controls. The first shows the master (or
parent) table. When a user selects an item in the first GridView, the second GridView is filled
with related records from the details (or parent) table.

US05CBCA21 UNIT-IV

Page: 23

For example, a typical implementation of this technique might have a customer’s table in the
first GridView. Select a customer, and the second GridView is filled with the list of orders
made by that customer.

To create a master-details page, you need to extract the SelectedIndex property from the first
GridView and use that to craft a query for the second GridView.

The way you do this is by setting the DataKeyNames property for the GridView. This property
requires a comma-separated list of one or more key fields. Each name you supply must match
one of the fields in the bound data source. Usually, you’ll have only one key field. Here’s an
example that tells the GridView to keep track of the CustomerID values in a list of customers:

<asp:GridView ID="gridCustomers" runat="server"
DataKeyNames="CustomerID" ... >

Once you’ve established this link, the GridView is nice enough to keep track of the key fields
for the selected record. It allows you to retrieve this information at any time through the
SelectedDataKey property.

Here’s the page markup for this example:

Categories:

<asp:GridView ID="gridCategories" runat="server" DataSourceID=
"sourceCategories" DataKeyNames="CategoryID">
 <Columns>
 <asp:CommandField ShowSelectButton="True" />
 </Columns>
 <SelectedRowStyle BackColor="#FFCC66" Font-Bold="True"
 ForeColor="#663399" />
</asp:GridView>
<asp:SqlDataSource ID="sourceCategories" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT * FROM Categories"></asp:SqlDataSource>

Products in this category:

<asp:GridView ID="gridProducts" runat="server"
DataSourceID="sourceProducts">
 <SelectedRowStyle BackColor="#FFCC66" Font-Bold="True" ForeColor="#663399"
/>
</asp:GridView>
<asp:SqlDataSource ID="sourceProducts" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT ProductID, ProductName, UnitPrice FROM Products WHERE
CategoryID=@CategoryID">
 <SelectParameters>
 <asp:ControlParameter Name="CategoryID" ControlID="gridCategories"
 PropertyName="SelectedDataKey.Value" />
 </SelectParameters>
</asp:SqlDataSource>

As you can see, you need two data sources, one for each GridView. The second data source
uses a ControlParameter that links it to the SelectedDataKey property of the first GridView.
Best of all, you still don’t need to write any code or handle the SelectedIndexChanged event
on your own.

Editing with the GridView

US05CBCA21 UNIT-IV

Page: 24

The GridView provides support for editing that’s almost as convenient as its support for
selection.

To switch a row into edit mode, you set the EditIndex property to the corresponding row
number

For selection, you use a CommandField column with the ShowSelectButton property set to
True. To add edit controls, you follow almost the same step—once again, you use the
CommandField column, but now you set ShowEditButton to True.

Here’s an example of a GridView that supports editing:

<asp:GridView ID="gridProducts" runat="server" DataSourceID="sourceProducts"
 AutoGenerateColumns="False" DataKeyNames="ProductID" >
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ID" ReadOnly="True"
/>
 <asp:BoundField DataField="ProductName" HeaderText="Product Name"/>
 <asp:BoundField DataField="UnitPrice" HeaderText="Price" />
 <asp:CommandField ShowEditButton="True" />
 </Columns>
</asp:GridView>

When you add a CommandField with the ShowEditButton property set to True, the GridView
editing controls appear in an additional column. When you run the page and the GridView is
bound and displayed, the edit column shows an Edit link next to every record. When clicked,
this link switches the corresponding row into edit mode. All fields are changed to text boxes,
with the exception of read-only fields (which are not editable) and true/false bit fields (which
are shown as check boxes). The Edit link is replaced with an Update link and a Cancel link.

The Cancel link returns the row to its initial state. The Update link passes the values to the
SqlDataSource.UpdateParameters collection (using the field names) and then triggers the
SqlDataSource.Update() method to apply the change to the database. Once again, you don’t
have to write any code, provided you’ve filled in the UpdateCommand for the linked data source
control.

You can use a similar approach to add support for record deleting. To enable deleting, you
need to add a column to the GridView that has the ShowDeleteButton property set to True.

As long as your linked SqlDataSource has the DeleteCommand property filled in, these
operations will work automatically.

The GridView does not support inserting records. If you want that ability, you can use one of
the single-record display controls described later in this chapter, such as the DetailsView or
FormView.

Sorting and Paging the GridView

The GridView has two features that make data more manageable: sorting and paging.

Sorting

The GridView sorting features allow the user to reorder the results in the GridView by clicking
a column header.

US05CBCA21 UNIT-IV

Page: 25

To enable sorting, you must set the GridView.AllowSorting property to True. Next, you need
to define a SortExpression for each column that can be sorted. A sort expression can use any
syntax that’s understood by the data source control. A sort expression almost always takes the
form used in the ORDER BY clause of a SQL query.

Here’s how you could define the ProductName column so it sorts by alphabetically ordering
rows:

<asp:BoundField DataField="ProductName" HeaderText="Product Name"
 SortExpression="ProductName" />

Once you’ve associated a sort expression with the column and set the AllowSorting property
to True, the GridView will render the headers with clickable links.

Not all data sources support sorting, but the SqlDataSource does, provided the
DataSourceMode property is set to DataSet (the default), not DataReader. In DataSet mode,
the entire results are placed in a DataSet and then the records are copied from the DataSet into
the bound control.

Paging

When working with a large number of database rows, it is useful to be able to display the rows in
different pages. You can enable paging with the GridView control by enabling its AllowPaging
property.

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceProducts"
 PageSize="10" AllowPaging="True" ...>
 ...
</asp:GridView>

To allow the user to skip from one page to another, the GridView displays a group of pager
controls at the bottom of the grid. These pager controls could be previous/next links (often
displayed as < and >) or num ber links (1, 2, 3, 4, 5, . . .) that lead to specific pages. If you’ve
ever used a search engine, you’ve seen paging at work.

By setting a few properties, you can make the GridView control manage the paging for you.

Paging Members of the GridView

Property Description
AllowPaging Enables or disables the paging of the bound records. It is False by

default.
PageSize Gets or sets the number of items to display on a single page of the grid.

The default value is 10.
PageIndex Gets or sets the zero-based index of the currently displayed page, if

paging is enabled.
PagerSettings Provides a PagerSettings object that wraps a variety of formatting

options for the pager controls. These options determine where the
paging controls are shown and what text or images they contain. You
can set these properties to fine-tune the appearance of the pager
controls, or you can use the defaults.

PagerStyle Provides a style object you can use to configure fonts, colors, and text
alignment for the paging controls.

US05CBCA21 UNIT-IV

Page: 26

PageIndexChanging
and
PageIndexChanged
events

Occur when one of the page selection elements is clicked, just before
the PageIndex is changed (PageIndexChanging) and just after
(PageIndexChanged).

This is enough to start using paging. Figure 17-11 shows an example with ten records
per page (for a total of eight pages).

The DetailsView:

ASP.NET includes two controls: the DetailsView and the FormView. Both show a single
record at a time but can include optional pager buttons that let you step through a series of
records (showing one per page). Both give you an easy way to insert a new record, which the
GridView doesn’t allow. And both support templates, but the FormView requires them. This
is the key distinction between the two controls.

One other difference is the fact that the DetailsView renders its content inside a table, while
the FormView gives you the flexibility to display your content without a table. Thus, if you’re
planning to use templates, the FormView gives you the most flexibility. But if you want to
avoid the complexity of templates, the DetailsView gives you a simpler model that lets you
build a multirow data display out of field objects, in much the same way that the GridView is
built out of column objects.

The DetailsView

The DetailsView displays a single record at a time. It places each field in a separate row of a
table.

The DetailsView also allows you to move from one record to the next using paging controls, if
you’ve set the AllowPaging property to True. You can configure the paging controls using the
PagerStyle and PagerSettings properties in the same way as you tweak the pager for the
GridView.

One problem is that a separate postback is required each time the user moves from one record
to another. But the real drawback is that each time the page is posted back, the full set of
records is retrieved, even though only a single record is shown. This results in needless extra
work for the database server.

Defining Fields

The DetailsView can use the same fields that the GridView uses. You can disable this
automatic row generation by setting AutoGenerateRows to False. Its then up to you to declare
information you want to display.

Interestingly, you use the same field tags to build a DetailsView as you use to design a
GridView. The following code defines a DetailsView that shows product information.

<asp:DetailsView ID="DetailsView1" runat="server" AutoGenerateRows="False"
 DataSourceID="sourceProducts">
 <Fields>
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 ReadOnly="True" />
 <asp:BoundField DataField="ProductName" HeaderText="ProductName" />
 <asp:BoundField DataField="SupplierID" HeaderText="SupplierID" />

US05CBCA21 UNIT-IV

Page: 27

 <asp:BoundField DataField="CategoryID" HeaderText="CategoryID" />
 <asp:BoundField DataField="QuantityPerUnit" HeaderText="QuantityPerUnit"
/>
 <asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice" />
 <asp:BoundField DataField="UnitsInStock" HeaderText="UnitsInStock" />
 <asp:BoundField DataField="UnitsOnOrder" HeaderText="UnitsOnOrder" />
 <asp:BoundField DataField="ReorderLevel" HeaderText="ReorderLevel" />
 <asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued" />
 </Fields>
 ...
</asp:DetailsView>

The FormView:

You can use the FormView control to do anything that you can do with the DetailsView control.
You can use the FormView control to display, page, edit, insert, and delete database records.
However, unlike the DetailsView control, the FormView control is entirely template driven.

If you need the ultimate flexibility of templates, the FormView provides a template-only
control for displaying and editing a single record. The beauty of the FormView template model
is that it matches the model of the TemplateField in the GridView quite closely. This means
you can work with the following templates:

 ItemTemplate
 EditItemTemplate
 InsertItemTemplate
 FooterTemplate
 HeaderTemplate
 EmptyDataTemplate
 PagerTemplate

You can use the same template content you use with a TemplateField in a GridView in the
FormView. Here’s how you can use the same template in the FormView:

<asp:FormView ID="FormView1" runat="server" DataSourceID="sourceProducts">
 <ItemTemplate>
 In Stock:
 <%# Eval("UnitsInStock") %>

 On Order:
 <%# Eval("UnitsOnOrder") %>

 Reorder:
 <%# Eval("ReorderLevel") %>

 </ItemTemplate>
</asp:FormView>

Like the DetailsView, the FormView can show a single record at a time. You can deal with this
issue by setting the AllowPaging property to True so that paging links are automatically
created. These links allow the user to move from one record to the next, as in the previous
example with the DetailsView.Another option is to bind to a data source that returns just one
record.

US05CBCA21 UNIT-IV

Page: 28

A FormView that shows a single record

<asp:SqlDataSource ID="sourceProducts" runat="server"
 ConnectionString="<%$ ConnectionStrings:Northwind %>"
 SelectCommand="SELECT * FROM Products">
</asp:SqlDataSource>
<asp:DropDownList ID="lstProducts" runat="server"
 AutoPostBack="True" DataSourceID="sourceProducts"
 DataTextField="ProductName" DataValueField="ProductID"
Width="184px">
</asp:DropDownList>

The Repeater:

The Repeater control is used to display a repeated list of items that are bound to the control. The
Repeater control may be bound to a database table, an XML file, or another list of items.

Repeater is a Data Bind Control. Data Bind Controls are container controls. Data Binding is the
process of creating a link between the data source and the presentation UI to display the data.
ASP .Net provides rich and wide variety of controls, which can be bound to the data.

Repeater has five inline templates to format it:

 HeaderTemplate
 FooterTemplate
 ItemTemplate
 AlternatingItemTemplate
 SeperatorTemplate
 AlternatingItemTemplate

HeaderTemplate: This template is used for elements that you want to render once before your
ItemTemplate section.

FooterTemplate: - This template is used for elements that you want to render once after your
ItemTemplate section.

ItemTemplate: This template is used for elements that are rendered once per row of data. It is
used to display records.

AlternatingItemTemplate: This template is used for elements that are rendered every second
row of data. This allows you to alternate background colors. It works on even number of records
only.

SeperatorTemplate: It is used for elements to render between each row, such as line breaks.

Some point about Repeater Control

 It is used to display backend result set. It is used to display multiple tuple.

US05CBCA21 UNIT-IV

Page: 29

 It is an unformatted control. The Repeater control is a basic templated data-bound list. It
has no built-in layout or styles, so you must explicitly declare all layout, formatting, and
style tags within the control's templates.

 The Repeater control is the only Web control that allows you to split markup tags across
the templates. To create a table using templates, include the begin table tag (<table>) in
the HeaderTemplate, a single table row tag (<tr>) in the ItemTemplate, and the end
table tag (</table>) in the FooterTemplate.

 The Repeater control has no built-in selection capabilities or editing support. You can use
the ItemCommand event to process control events that are raised from the templates to the
control.

Handling Repeater Control Events

The Repeater control supports the following events:

 DataBinding Raised when the Repeater control is bound to its data source.
 ItemCommand Raised when a control contained in the Repeater control raises an event.
 ItemCreated Raised when each Repeater item is created.
 ItemDataBound Raised when each Repeater item is bound.

The DataList Control

The DataList control, like the Repeater control, is template driven. Unlike the Repeater control,
by default, the DataList renders an HTML table. Because the DataList uses a particular layout to
render its content, you are provided with more formatting options when using the DataList
control.

<asp:DataList
 id="dlstMovies"
 DataSourceID="srcMovies"
 RepeatLayout="Flow"
 Runat="server">
 <ItemTemplate>
 <%#Eval("Title")%>
 </ItemTemplate>
</asp:DataList>

DataList control in above example includes a RepeatLayout property that has the value Flow.
Each movie title is rendered in a tag followed by a line-break tag.

The RepeatLayout property accepts one of the following two values:

 Table Data Items are rendered in HTML table cells.
 Flow Data Items are rendered in HTML tags.

Displaying Data in Multiple Columns

You can render the contents of a DataList control into a multi-column table in which each data
item occupies a separate table cell. Two properties modify the layout of the HTML table
rendered by the DataList control:

US05CBCA21 UNIT-IV

Page: 30

 RepeatColumns The number of columns to display.

 RepeatDirection The direction to render the cells. Possible values are Horizontal and
Vertical.

For Example:

<asp:DataList
 id="dlstMovies"
 DataSourceID="srcMovies"
 RepeatColumns="3"
 GridLines="Both"
 Runat="server">
 <ItemTemplate>
 <%#Eval("Title")%>
 Directed by:
 <%#Eval("Director") %>

 Box Office Totals:
 <%#Eval("BoxOfficeTotals","{0:c}") %>
 </ItemTemplate>
 </asp:DataList>

Using Templates with the DataList Control

The DataList control supports all the same templates as the Repeater control:

 ItemTemplate Formats each item from the data source.
 AlternatingItemTemplate Formats every other item from the data source.
 SeparatorTemplate Formats between each item from the data source.
 HeaderTemplate Formats before all items from the data source.
 FooterTemplate Formats after all items from the data source

In addition, the DataList supports the following templates:

 EditItemTemplate Displayed when a row is selected for editing.
 SelectedItemTemplate Displayed when a row is selected.

US05CBCA21 UNIT-IV

Page: 31

Security Fundamentals

Ordinarily, your ASP.NET website is available to anyone who connects to your web server,
whether over a local network or the Internet. Although this is ideal for many web applications,
it isn’t always an appropriate design choice.

For example, an e-commerce site needs to provide a secure shopping experience to customers.
A subscription-based site needs to limit content to extract a fee. And even a wide-open public
site may provide some resources or features that shouldn’t be available to all users.

ASP.NET provides an extensive security model that makes it easy to protect your web
applications. Although this security model is powerful and very flexible, it can appear
confusing because of the many different layers that it includes. Much of the work in securing
your application isn’t writing code, but determining the appropriate places to implement your
security strategy.

There are two ways to authenticate users:

1. Using forms authentication (which is ideal for a public website that uses a custom
database) and

2. Using Windows authentication (which is ideal for an intranet application on a company
network).

Determining Security Requirements

 The first step in securing your applications is deciding where you need security and what it
needs to protect.
 For example, you may need to block access in order to protect private information. Or,

maybe you just need to enforce a pay-for-content system. Perhaps you don’t need any
sort of security at all, but you want an optional login feature to provide personalization
for frequent visitors. These requirements will determine the approach you use.

 Security doesn’t need to be complex but it does need to be wide-ranging and multilayered.
 For example, consider an e-commerce website that allows users to view reports of their

recently placed orders. You probably already know the first line of defense that this
website should use—a login page that forces users to identify themselves before they
can see any personal information.

 However, it’s important to realize that, on its own, this layer of protection is not enough to
truly secure your system. You also need to protect the back-end database with a strong
password, and you might even choose to encrypt sensitive information before you store it.
Steps like these protect your website from other attacks that get beyond your authentication
system.
 For example, they can prevent dissatisfied employee with an account on the local

network, a hacker who has gained access to your network through the company
firewall, or a careless technician who discards a hard drive used for data storage
without erasing it first.

 Furthermore, you’ll need to hunt carefully for weaknesses in the code you’ve written. A

US05CBCA21 UNIT-IV

Page: 32

surprising number of websites fall prey to relatively simple attacks in which a malicious
user simply tampers with a query string argument or a bit of HTML in the rendered page.
 For example, in the e-commerce example you need to make sure that a user who

successfully logs in can’t view another user’s recent orders. Imagine you’ve created a
ViewOrders.aspx page that takes a query string argument named userID, like this:
http://localhost/InsecureStore/ViewOrders.aspx?userID=4191

 This example is a security nightmare, because any user can easily modify the userID
parameter by editing the URL to see another user’s information. A better solution would be
to design the page so that it gets the user ID from the currently logged-on user identity, and
then uses that to construct the right database command.

 When designing with security in mind, it’s important to consider the different avenues for
attack. However, you can’t always anticipate potential problems. For that reason, it makes
great sense to layer your security. The mantra of security architects can be summed up like
this: “Don’t force an attacker to do one impossible thing to break into your system—force
them to do several.”

http://localhost/InsecureStore/ViewOrders.aspx?userID=4191

	 Those that are used to connect to a specific data source (such as Connection, Command, and DataReader).
	Connected Architecture of ADO.NET
	Disconnected Architecture in ADO.NET
	The architecture of ADO.net in which data retrieved from database can be accessed even when connection to database was cosed is called as disconnected architecture. Disconnected architecture of ADO.net was built on classes Connection, DataAdapter, CommandBuilder and DataSet and DataView.���Connection: Connection object is used to establish a connection to database and connection itself will not transfer any data.
	DataAdapter: DataAdapter is used to transfer the data between database and dataset. It has commands like select, insert,update and delete. Select command is used to retrieve data from database and insert, update and delete commands are used to send changes to the data in dataset to database. It needs a connection to transfer the data.
	CommandBuilder: by default DataAdapter contains only the select command and it doesn’t contain insert, update and deletecommands. To create insert, update and delete commands for the DataAdapter, CommandBuilder is used. It is used only to create these commands for the DataAdapter and has no other purpose.
	DataSet: DataSet is used to store the data retrieved from database by DataAdapter and make it available for .net applicaion.
	To fill data in to dataset fill() method of dataadapter is used and has the following syntax.
	Da.Fill(Ds,”TableName”);
	When fill method was called, DataAdapter will open a connection to database, executes select command, stores the data rerieved by select command in to DataSet and immediately closes the connection.
	As connection to database was closed, any changes to the data in dataset will not be directly sent to the database and wll be made only in the dataset. To send changes made to data in dataset to the database, Update() method of the dataadapter is used that has the following syntax.
	Da.Update(Ds,”Tablename”);
	When Update method was called, dataadapter will again open the connection to database, executes insert, update and delet commands to send changes in dataset to database and immediately closes the connection. As connection is opened only when it is required and will be automatically closed when it was not required, this architecture is called disconnected architecture.
	A dataset can contain data in multiple tables.
	Data Providers:
	The second group of classes exists in several different flavors.
	Each set of data interaction Classes is called an ADO.NET data provider. Data providers are customized so that each one ses the best-performing way of interacting with its data source.
	For example, the SQL Server data provider is designed to work with SQL Server 7 or later. Internally, it uses SQL Servers TDS (tabular data stream) protocol for communicating, thus guaranteeing the best possible performance. If you’re using Oracle, you’ll need to use the Oracle provider classes instead.
	It’s important to understand that you can use any data provider in almost the same way, with almost the same code. The povider classes derive from the same base classes, implement the same interfaces, and expose the same set of methods and properties.
	In some cases, a data provider object will provide custom functionality that’s available only with certain data sources,such as SQL Server’s ability to perform XML queries. However, the basic members used for retrieving and modifying data are identical.
	.NET includes the following four providers:
	In addition, third-party developers and database vendors have released their own ADO.NET providers, which follow the sam conventions and can be used in the same way as those that are included with the .NET Framework.
	If you can’t find a suitable provider, you can use the OLE DB provider, as long as you have an OLE DB driver for your daa source. The OLE DB technology has been around for any years as part of ADO, so most data sources provide an OLE DB driver including SQL Server, Oracle, Access, MySQL, etc. In the rare situation that you can’t find a full provider or an OLE DB driver, you can fall back on the ODBC provider, which works in conjunction with an ODBC driver.
	To help understand the different layers that come into play with ADO.NET, refer to Figure
	The layers between code and the data source Data Namespaces
	The Data Provider Classes
	On their own, the data classes can’t accomplish much. Technically, you could create data objects by hand, build tables ad rows in your code, and fill them with information. But in most cases, the information you need is located in a data source such as a relational database. To access this information, extract it, and insert it into the appropriate data objects, you need the data provider classes described in this section. Remember, each one of these classes has a database-specific implementation. That means you use a different, but essentially equivalent, object depending on whether you’re interacting with SQL Server, Oracle, or any other ADO.NET provider.
	Regardless of which provider you use, your code will look almost the same. Often the only differences will be the namespce that’s used and the name of the ADO.NET data access classes.
	Each provider designates its own prefix for naming classes.
	Thus, the SQL Server provider includes SqlConnection and SqlCommand classes, and the Oracle provider includes OracleConnction and OracleCommand classes.
	Remember, though the underlying technical details differ, the classes are almost identical. The only real differences ar as follows:
	The easiest way to interact with a database is to use direct data access. When you use direct data access, you’re in chage of building a SQL command and executing it. You use commands to query, insert, update, and delete information.
	When you query data with direct data access, you work with it for a brief period of time while the database connection i open, and then close the connection as soon as possible. This is different than disconnected data access, where you keep a copy of the data in the DataSet object so you can work with it after the database connection has been closed.
	The direct data model is well suited to ASP.NET web pages, which don’t need to keep a copy of their data in memory for lng periods of time. Remember, an ASP.NET web page is loaded when the page is requested and shut down as soon as the response is returned to the user. That means a page typically has a lifetime of only a few seconds.
	To query information with simple data access, follow these steps:
	To add or update information, follow these steps:
	Creating a Connection
	Before you can retrieve or update data, you need to make a connection to the data source.
	You should also write your database code inside a Try/Catch error-handling structure so you can respond if an error doesoccur, and make sure you close the connection even if you can’t perform all your work.
	When creating a Connection object, you need to specify a value for its ConnectionString property. This ConnectionString efines all the information the computer needs to find the data source, log in, and choose an initial database.
	Handling Repeater Control Events
	The DataList Control
	Displaying Data in Multiple Columns
	Using Templates with the DataList Control

	Word Bookmarks
	iddle2547
	iddle1197
	iddle4603
	iddle4601
	iddle6099
	iddle6033
	iddle6097
	iddle8144
	iddle2479
	ch13lev1sec2
	iddle3416
	iddle3506
	iddle5604
	iddle5624
	iddle6765
	iddle6769
	iddle8083
	iddle8100
	iddle3515
	iddle3516
	iddle4276
	iddle4649
	iddle3915
	iddle1212
	iddle2482
	iddle3419
	iddle3509
	iddle5018
	iddle3510
	iddle3511
	iddle7054
	iddle7092
	iddle3512
	iddle3513
	iddle8103
	iddle3514
	iddle8207
	iddle8208
	iddle8209
	iddle8210
	iddle8211
	iddle8212
	iddle8213
	iddle8214

