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INTRODUCTION 

A crystal is a solid composed of atoms or other microscopic particles arranged 

in an orderly periodic array in three dimensions. It may not be a complete definition, 

yet it is a true description. 

The three general types of solids: amorphous, polycrystalline and single 

crystal are distinguished by the size of ordered regions within the materials. Order 

in amorphous solids is limited to a few molecular distances. In polycrystalline 

materials, the solid is made-up of grains which are highly ordered crystalline regions 

of irregular size and orientation. Single crystals have long-range order. Many 

important properties of materials are found to depend on the structure of crystals 

and on the electron states within the crystals. The study of crystal physics aims to 

interpret the macroscopic properties in terms of properties of the microscopic 

particles of which the solid is composed. The study of the geometric form and other 

physical properties of crystalline solids by using x-rays, electron beams and neutron 

beams constitute the science of crystallography or crystal physics. 

 

LATTICE POINTS AND SPACE LATTICE 

The atomic arrangement in a crystal is called crystal structure. In perfect 

crystal, there is a regular arrangement of atoms. This periodicity in the arrangement 

generally varies in different directions. It is very convenient to imagine points in 

space about which these atoms are located. Such points in space are called lattice 

points and the totality of such points forms a crystal lattice or space lattice. If all the 

atoms at the lattice points are identical, the lattice is called a “Bravais lattice”. Thus, 

the three-dimensional space lattice may be defined as a finite array of points in 
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three-dimensions in which every point has identical environment as any other point 

in the array. 

Fig 1 shows two-dimensional array of points.  The environment about any two 

points is the same and hence it represents a lattice.  

Choose any arbitrary point as origin and consider the position vectors 𝑟1 and 

𝑟2 of any two lattice points by joining them to 𝑂 as shown in Fig. 1. If the difference 

𝑇 of the two vectors 𝑟1 and 𝑟2 satisfies the following Relation, 

  �⃗�   =   𝑛1𝑎 +  𝑛2�⃗�         (1) 

where 𝑛1 and 𝑛2 are integers and 𝑎  and �⃗�  are fundamental translation vectors 

characteristic of the array, then the array of points is a two-dimensional lattice. 

 

 

Figure 1 Two-dimensional array of points 

For three dimensional lattices:  

�⃗�   =   𝑛1𝑎 +  𝑛2�⃗� + 𝑛3𝑐                                             (2) 

Hence it should be remembered that a crystal lattice refers to the geometry of a set 

of points in space whereas the structure of crystal refers to the actual ordering of its 

constituent ions, atoms, molecules in the space. 
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THE BASIS AND CRYSTAL STRUCTURE 

For a lattice to represent a crystal structure, we associate every lattice point 

with one or more atoms called the basis or the pattern. When the basis is repeated 

with correct periodicity in all directions, it gives the actual crystal structure. The 

crystal structure is real, while the lattice is imaginary. Thus, 

 Basis    +  lattice   =  crystal structure 

 

Figure 2 Basis or pattern 

(Fig. 2) shows the basis or pattern representing each lattice point. It is 

observed from the figure that a basis consists of three different atoms. It can also 

be observed that the basis is identical in composition, arrangement and orientation. 

In crystalline solids like copper and sodium, the basis is a single atom (monoatomic), 

in NaCI and CsCl, the basis is diatomic whereas in crystals like CaF2, the basis is 

triatomic. 

 

 

Figure 3 
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UNIT CELLS AND LATTICE PARAMETER 

 The atomic order in crystalline solids indicates that the small groups of atoms 

form a repetitive pattern.  Thus, in describing crystal structures, the structure us 

subdivided into small repeat entities called unit cell.  In every crystal some 

fundamental grouping of particles called unit cell.  Unit cell for most crystals is 

parallelopiped or cubes having three sets of parallel faces, a unit cell is chosen to 

represent the symmetry of the crystal structure, wherein all the atom positions in 

the crystal may be generated by translation of the unit cell through integral 

distances along each of its edges.  Thus, unit cell is the basic structural unit or 

building block of the crystal structure by virtue of its geometry and atomic position 

within.  Unit cells are the building blocks of the crystal, each one is indistinguishable 

from next.      

  

Fig 4 Lattice parameters of unit cell  

 Taking any lattice point as the origin, all other points on the lattice can be 

obtained by a repeated operation of the lattice vectors 𝑎 , �⃗� , 𝑐 .   The  �⃗⃗� , �⃗⃗� , �⃗�  lattice 

vectors and interfacial angles (α, β, γ) constitutes the lattice parameters of the unit 

cell.  

 The vectors  𝑎 , �⃗�  and  𝑐  and the angles α, β and γ may or may not be equal.   

Based on these conditions there are seven different crystal systems.  If atoms are 

Fig 4 shows a unit cell of a three – 

dimensional crystal lattice.  A space 

lattice is a regular distribution of 

points in a space, in such a manner 

that every point has identical 

surroundings.  The lattice is made up 

of repetition of unit cells, and a unit 

cell described by three vectors, 𝑎 , �⃗� , 

𝑐   where the length of the vectors 

and angles between them (α, β, γ) 

are specified. 
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existing only at the corners of the unit cells, the seven crystal systems will give seven 

types of lattice.  More space lattice can be constructed by placing atoms or particle 

at the body centers of the unit cells, or at the centers of the faces.   Bravais showed 

that the total number of different space lattice types is only fourteen and hence 

termed as “Bravais lattice”. 

 

UNIT CELL VERSUS PRIMITIVE CELL 

 

The unit cells and primitive cell may be defined as a geometrical shape which, 

when repeated indefinitely in three dimensions.  The primitive cell is also defined as 

the minimum volume unit cell having only one lattice point. In Fig. 3 lattice point is 

only since one point at each corner contributes l/8th of a point to the cell. The other 

cell shown in Fig. 3 (b) has two lattice points and, therefore, it is non-primitive. We 

can also say that in a primitive cell, lattice points are located only at the corners of 

the cell. All the lattice points are equivalent in a primitive cell, whereas it is not so in 

general [Fig. 3 (b)]. But we must not forget here that the basis of all the lattice points 

(whether equivalent or non-equivalent) remains identical in the whole volume of 

the crystal.  

                                   

 (a)      (b) 

Figure3 (a) A primitive cell.                                   (b) A non-primitive cell  
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The unit cell that contains one lattice point only at the corners is known as 

primitive cell.  The unit cell may be primitive cells but all the primitive cells need not 

be unit cell. 

 

CRYSTAL SYSTEMS 

 

There are thirty-two classes of the crystal systems based on the geometrical 

considerations i.e., symmetry and internal structure. But it is a common practice to 

divide all the crystal systems into seven groups or basic systems. These seven basic 

crystal systems are distinguished from one another by the angles between the three 

axes and the intercepts of the faces along them. The basic crystal systems are: 

➢ cubic (Isometric) 

➢ tetragonal 

➢ orthorhombic 

➢ monoclinic 

➢ triclinic 

➢ trigonal (rhombohedral) 

➢ hexagonal 

 

(i) CUBIC CRYSTAL SYSTEM 

 

𝑎 = 𝑏 = 𝑐, 𝛼 = 𝛽 = 𝛾 = 900 
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The crystal axes are perpendicular to one another, and the repetitive interval 

is the same along all the three axes. Cubic lattices may be simple, body-centered or 

face-centered. 

 

(II) TETRAGONAL CRYSTAL SYSTEM 

 

𝑎 = 𝑏 ≠ 𝑐, 𝛼 = 𝛽 = 𝛾 = 900 

 

The crystal axes are perpendicular to one another. The repetitive intervals 

along two axes are the same, but the interval along the third axis is different. 

Tetragonal lattices may be simple or body-centered. 

 

(III) ORTHORHOMBIC CRYSTAL SYSTEM 

 

𝑎 ≠ 𝑏 ≠ 𝑐, 𝛼 = 𝛽 = 𝛾 = 900 
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The crystal axes are perpendicular to one another, but the repetitive intervals 

are different along all the three axes. Orthorhombic lattices may be simple, base 

centered, body-centered or face-centered. 

 

(iv) MONOCLINIC CRYSTAL SYSTEM 

 

𝑎 ≠ 𝑏 ≠ 𝑐, 𝛼 = 𝛽 = 900 ≠ 𝛾 

 

Two of the crystal axes axe perpendicular to each other, but the third is 

obliquely inclined. The repetitive intervals are different along all the three axes. 

Monoclinic lattices may be simple or base-centered. 

 

(v) TRICLINIC CRYSTAL SYSTEM 

𝑎 ≠ 𝑏 ≠ 𝑐, 𝛼 ≠ 𝛽 ≠ 𝛾 ≠ 900 

None of the crystal axes is perpendicular to any of the others, and the 

repetitive intervals are different along all the thee axes. 
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(VI) TRIGONAL (SOMETIMES CALLED RHOMBOHEDRAL) CRYSTAL SYSTEM 

𝑎 = 𝑏 = 𝑐, 𝛼 = 𝛽 = 𝛾 ≠ 900 

 

The three axes are equal in length and are equally inclined to each other at an 

angle other than 90°. 

 

(Vii) HEXAGONAL CRYSTAL SYSTEM 

𝑎 = 𝑏 ≠ 𝑐, 𝛼 = 𝛽 = 900, 𝑎𝑛𝑑 𝛾 = 1200 

 

Two of the crystal axes are 60° apart while the third is perpendicular to both 

of them. The repetitive intervals are the same along the axes that are 60° apart, but 

the interval along the third axis is different.  

 

The seven crystal systems (fourteen lattice types) and their properties are 

given in Table 1. 
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Table 1. The seven crystal systems (fourteen lattice types) in three dimensions. 

Sr. 

No. 
Crystal System 

Axial 

length of 

Unit Cell 

Inter axial angles 

Number of 

Lattice in 

the system 

1 Cubic 𝑎 = 𝑏 = 𝑐 𝛼 = 𝛽 = 𝛾 = 900 3 

2 Tetragonal 𝑎 = 𝑏 ≠ 𝑐 𝛼 = 𝛽 = 𝛾 = 900 2 

3 Orthorhombic 𝑎 ≠ 𝑏 ≠ 𝑐 𝛼 = 𝛽 = 𝛾 = 900 4 

4 Monoclinic 𝑎 ≠ 𝑏 ≠ 𝑐 𝛼 = 𝛽 = 900 ≠ 𝛾 2 

5 Triclinic 𝑎 ≠ 𝑏 ≠ 𝑐 𝛼 ≠ 𝛽 ≠ 𝛾 ≠ 900 1 

6 Trigonal 𝑎 = 𝑏 = 𝑐 
𝛼 = 𝛽 = 𝛾  < 1200,

≠ 900 
1 

7 Hexagonal 𝑎 = 𝑏 ≠ 𝑐 
𝛼 = 𝛽 = 900, 𝑎𝑛𝑑 𝛾

= 1200 
1 

 

 

 CRYSTAL SYMMETRY (SYMMETRY ELEMENTS IN CRYSTALS) 

 

The definite ordered arrangement of the faces and edges of a crystal is known as 

crystal symmetry.  An operation that takes the crystal into itself and leaves crystal 

and its environment invariant is called a symmetry operation.  

Symmetry operations performed about a point or a line are called point group 

symmetry operations and symmetry operations performed by translations as well 

as rotation are called space group symmetry operations.  Crystals exhibits both 

types of symmetries independently and in compatible combinations.  A symmetry 

operation is performed on body which leaves it unchanged or invariant.  After 

performing an operation on the body, if the body becomes indistinguishable from 

the initial configuration, the body is said to possess symmetry element compare to 
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the particular operation.  The different types of the point group symmetry elements 

exhibited by the crystals are  

• Centre of symmetry or Inversion Centre.  

• Reflection symmetry. 

• Rotation symmetry. 

 

THE TWENTY – THREE SYMMETRY ELEMENTS IN A CUBIC CRYSTAL  

 The features of the many crystals are a certain regularity in the arrangement 

of faces.  Another feature is frequent occurrence of similar faces in parallel pairs on 

opposite sides of the crystal.   

 A cube possesses three such points of parallel and opposite faces. Hence a 

cube is said to show a centre of symmetry, i.e., the body centre of the cube is a 

centre of symmetry.   This centre lies at equal distances from various symmetrical  

 

Thus, inversion is a symmetry operation in a crystal equivalent to reflection 

through a point as shown in above figure.  

The second kind of the symmetry element in crystal is a plane of symmetry or 

reflection symmetry.  A crystal is said to possess reflection symmetry about a plane 

if it is left unchanged in every way after being reflected by a plane.  Regular crystals 

may be bilaterally symmetrical about several plane cutting them in different 

directions.  These may have several planes of symmetry.  It’s not only divides crystal 

Positions.  Centre of symmetry is also 

known as inversion centre.   

 A crystal will possess an inversion 

centre if for e very lattice point given by the 

position vector 𝑟 ,  there will be a 

corresponding lattice point at position -𝑟  
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into two equal portions, but these two portions must be so situated that they are 

mirror images each other with respect to the plane.  The two symmetry elements, 

centre of inversion and plane of reflection.  The three planes of symmetry in a cube 

are shown in Fig. A and Six diagonal planes of symmetry in a cube are shown in Fig 

B 

 

Fig A The three planes of symmetry parallel to the faces of the cube 

 

 

Fig. B Six Diagonal planes of symmetry in a cube. 
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A body is said possess rotational symmetry about an axis if after rotation of the body, 

about this axis by some angle Φn, the body appears as it did prior to rotation.  The 

axis of symmetry may thus define as a line such that the crystal assumes a similar 

position for every rotation of [
360

𝑛
]
0
.   The value of n decides the fold of the axis. Only 

one, two, three, four and six - fold rotation axes of symmetry alone are possible in a 

single crystal lattice.   

 

Fig. c three tetrad axis of cubes.  

    

Fig d four triad axes of a cube                           Fig e six diad axes of a cube 

When cube is rotated about solid diagonal through 1200 to get symmetry 

position, and such a line, of which there are four, is therefore triad axis is shown in 

If a cube is rotated about a line 

perpendicular to one of its faces at its 

midpoint, it will turn into invariant 

position every 900, four times during 

complete 3600 revolution; the axis is 

four – fold symmetry, a tetrad axis, and 

a cube clearly possess three such axes, 

one normal to each of the three pairs of 

the parallel faces as shown in Fig. c. 
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Fig d.  a line joining the mid points of a pair of opposite edges proves to be a diad 

axis, and there are six of such axes present in a cube as shown in Fig. e. 

The total number of crystallographic symmetry elements of the cubic system 

are thus given by one centre of symmetry, three straight planes, six diagonal planes, 

three tetrad axis, four triad axis and six diad axis.  

 

COMMBINATION OF SYMMETRY ELEMENTS 

 The different symmetry elements can also be combined if they are 

compatible.  The different combinations give rise to different symmetry points in 

the crystal.  All crystal system does not possess the same symmetry operations, the 

different crystal system exhibits different symmetries. It is found that there are 32 

compatible combinations of the above three-point group symmetry element, called 

simply point groups.  Crystals belonging to different crystal systems can be classified 

on the basis of point groups. 

 

ROTATION – INVERSION AXIS 

 A crystal structure is said to possess rotation – inversion axis if it is brought in 

to self – coincidence by rotation followed by an inversion about the lattice point 

through which the rotation axis possesses.  

 

 

Stereogram to show the 
operation of 4 – fold roto – 
inversion axis. 

 

Consider an axis normal to the circle passing 

through the centre, operating on pole 1 to rotate it 

through 900 to the position 4 followed by the inversion 

to the position 2; the compound operation is then 

repeated until the original position again reached.  

Thus, from position 2 the pole is rotated a further 900 

and inverted to position 3; rotated further 900 and 

inverted to position 4; rotated a further 900 and 

inverted to resume position 1.  
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This operation includes an 𝑛 -fold rotation followed by an inversion. Its common 

representation is �̄�, where 𝑛 = 1, 2, 3, 4, 6. Thus a roto inversion composed of a 3-

fold rotation and an inversion is depicted as 3̄.  Crystal can possess 1-, 2-, 3-, 4- and 

6- fold rotation – inversion axes, represented by 1̅, 2̅, 3̅, 4̅, 𝑎𝑛𝑑 6̅. 

 

TRANSLATION SYMMETRY ELEMENTS 

(i) GLIDE PLANE 

When a mirror plane is combined with a simultaneous translation operation in a 

crystal, one gets a glide plane.  The glide plane in a crystal is always parallel to the 

mirror plane.  The different glide planes, their symbols and their translations parallel 

to the different axes and planes are shown in following table. 

 

TYPES OF GLIDE SYMBOL TRANSLATION COMPOUND 

Axial glide a a/2 

Axial glide b b/2 

Axial glide c c/2 

Diagonal glide n (
𝑎

2
+

𝑏

2
), (

𝑏

2
+

𝑐

2
) or (

𝑐

2
+

𝑎

2
) 

Diamond glide d (
𝑎

4
+

𝑏

4
), (

𝑎

4
+

𝑏

4
)  𝑜𝑟 (

𝑎

4
+

𝑏

4
) 

 

(ii) SCREW AXIS 

When rotation and inversion are combined, it produces hybrid roto inversion  

axis.  It is possible to combine a proper rotation with translation parallel to the 

rotation axis will give new symmetry element called screw axis.   

 A screw axis is usually represented by the symbol ‘nm’.  this is performed by a 

rotation of [
2𝜋

𝑛
]  and translation of [

𝑚

𝑛
] times the translation vector parallel to the  
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Fig. Screw axis 

 

Figure The eleven possible screw axes 

 

 SPACE GROUPS  

The information about a crystal structure is complete only when its point 

group and space group both are known. In a crystal, point group symmetry 

operations can also be combined with translation symmetry elements, such 

rotation axis.  the screw axis 42 is performed as, 

rotate the point through 900 about the 

symmetry axis and translate the point by 
2

4
=

1

2
 

times the translation vector parallel to the 

rotation axis.  Apply the operation successively 

until the cycle is complete.  The eleven screw 

axes possible in the crystal lattice are shown in 

the figure.  

 

 

 

 



 CRYSTAL PHYSICS AND X RAY DIFFRACTION 

17 
 

combinations are called space groups. There are 230 space groups in three 

dimensions exhibited by crystals.  The study of symmetry elements of the different 

crystals enables one of the classify the crystal and their properties based on different 

symmetries. 

Crystal family 

Crystal system 

space groups Bravais lattices Lattice system 

Triclinic 2 1 Triclinic 

Monoclinic 13 2 Monoclinic 

Orthorhombic 59 4 Orthorhombic 

Tetragonal 68 2 Tetragonal 

Hexagonal Trigonal 7 1 Rhombohedral 

18 1 Hexagonal 

Hexagonal 27 

Cubic 36 3 Cubic 

Total: 6 7 230 14 7 

 

THE BRAVAIS SPACE LATTICES 

 There are many numbers of ways in which actual crystal may be built up and 

atoms joined together resulting in many crystal structures.  Each of the structure 

consist of some fundamental pattern repeated at each point of a space lattice.  The 

scheme of repetitions pf a space lattice is very limited while the possible crustal 

structures are unlimited.  The Bravais shows that there are only 14 different arrays 

or networks of lattice in which points can be arranged in space so that each point 

has identical surroundings.  These are known as Bravais space lattice.   

 To specify a given arrangement of points in a space lattice of atoms in a 

structure, a set of coordinate axes with an origin at one of the lattice points is 

chosen.  Cubic crystals, are referred as cubic set of axes.  Seven different systems 

http://en.wikipedia.org/wiki/Crystal_family
http://en.wikipedia.org/wiki/Space_group
http://en.wikipedia.org/wiki/Bravais_lattice
http://en.wikipedia.org/wiki/Lattice_system
http://en.wikipedia.org/wiki/Triclinic
http://en.wikipedia.org/wiki/Triclinic
http://en.wikipedia.org/wiki/Monoclinic
http://en.wikipedia.org/wiki/Monoclinic
http://en.wikipedia.org/wiki/Orthorhombic
http://en.wikipedia.org/wiki/Orthorhombic
http://en.wikipedia.org/wiki/Tetragonal
http://en.wikipedia.org/wiki/Tetragonal
http://en.wikipedia.org/wiki/Hexagonal_crystal_family
http://en.wikipedia.org/wiki/Trigonal
http://en.wikipedia.org/wiki/Rhombohedral_lattice_system
http://en.wikipedia.org/wiki/Hexagonal_lattice_system
http://en.wikipedia.org/wiki/Hexagonal_crystal_system
http://en.wikipedia.org/wiki/Cubic_crystal_system
http://en.wikipedia.org/wiki/Cubic_crystal_system


 CRYSTAL PHYSICS AND X RAY DIFFRACTION 

18 
 

used in crystallography possess certain characteristics like equality of angles and 

equality of lengths.  These seven crystallographic axes generate the 14 space 

lattices.  Most of the common metals and some important alkali halides have cubic 

structure.  In cubic crystals, atoms are packed in cubic pattern with three different 

types of repetition; Simple Cubic (SC), Body Centred Cubic (BCC) and Face Centred 

Cubic (FCC).  The 14 space lattices are shown below  
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METALLIC CRYSTAL STRUCTURES 

 

Since atomic bonding in this group of materials is metallic, within the hard 

sphere model for the representation of a crystal structure, each sphere represents 

an ion core. Three relatively simple crystal structures are found for most of the 

common metals: body centered cubic, face centered cubic and hexagonal close 

packed. An important characteristic of most of the metals is that they are crystalline; 

i.e., the atoms are arranged in some regular repeatable pattern indefinitely in space. 

 

(I) SIMPLE CUBIC STRUCTURE (SC) 

The simplest and easiest structure to describe is the simple cubic crystal 

structure. Fig. shows the unit cell of a simple cubic structure. In a simple cubic lattice, 

there is one lattice point at each of the eight corners of the unit cell.  

 

Figure Simple Cubic (SC) Structure. 

If we take an atom at one corner as the centre, it is observed that this atom is 

surrounded by six equidistant nearest neighbours and hence the coordination 

number of a simple cubic lattice is six. In this structure, each corner atom is shared 

by eight-unit cells. Hence the share of each corner atom to a unit cell is one-eighth 

of an atom. In this way the total number of atoms in one-unit cell will be 
1

8
 ×  8 =

1atom. In other words, the effective number of lattice points in a simple cubic cell 

is one. In this structure the atoms touch each other along the edges. Hence the 

nearest neighbour distance, 2 𝑟 = 𝑎. We note in SC structure that: 
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Coordination number, 𝑁 = 6 

Nearest neighbour distance, 2 𝑟 = 𝑎 

Lattice constant, 𝑎 = 2 𝑟 

Number of atoms per unit cell, 𝑛 =
1

8
× 8 = 1 

Number of lattice points, = 1 

Volume of all the atoms in a unit cell, 𝑣 = 1 ×
4

3
 𝜋 𝑟3 

Volume of unit cell, 𝑉 = 𝑎3 = (2 𝑟)3                                                                                       

Hence the packing factor (PF) or density of packing of this structure is: 

𝑃𝐹 =
𝑣

𝑉
=

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑖𝑛 𝑎 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙
        

𝑃𝐹 =
𝑣

𝑉
=

4

3
 𝜋 𝑟3

𝑎3
=

4

3
 

𝜋 𝑟3

(2 𝑟)3
=

𝜋

6
= 0.53 𝑜𝑟 52%                   

Only one element polonium at a certain temperature region exhibits this structure. 

SC structure is a loosely packed structure. 

Some important crystal structure terms are: 

Coordination number (𝑵): The coordination number is defined as the number 

of equidistant nearest neighbours that an atom has in the given structure. Greater 

is the coordination number, the more closely packed up will be the structure. 

Nearest neighbour distance (𝟐𝒓): The distance between the centres of two 

nearest neighbouring atoms is called nearest neighbour distance. It will be 2𝑟 

where, 𝑟 is the radius of the atom. 

Atomic radius (𝒓): Atomic radius is defined as half the distance between 

nearest neighbours in a crystal of pure element. 

Atomic packing factor: The fraction of the space occupied by atoms in a unit 

cell is known as atomic packing factor (APF); or simply packing factor; i.e., it is the 
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ratio of the volume of the atoms occupying the unit cell to the volume of the unit 

cell relating to that structure. 

 

(ii) BODY CENTERED CUBIC STRUCTURE (BCC) 

Elements, that exhibit this structure are Li, Na, K, Rb and Cs. In this structure, 

in a unit cell, there are 8 atoms at the eight corners and another atom at the body 

centre.  

 

Figure Body centered cubic structure. 

As the body centre is contained entirely within the unit cell and is not shared 

by any surrounding unit cell, the number of atoms per unit cell in a bcc structure is 

𝑛 =
1

8
× 8 + 1 = 2. The corner atoms do not touch each other, but each corner 

atom touches the body centre atom along the body diagonal. Hence, the 

coordination number of this structure is 8. 

The calculation of the lattice constant can be made with the help of above 

figure. 

(𝐴𝐶)2 = 𝑎2  + 𝑎2 = 2 𝑎2        (1) 

(𝐹𝐶)2 = (𝐴𝐶)2  + (𝐴𝐹)2        (2) 

(𝐹𝐶)2 = 2 𝑎2  + 𝑎2 = 3 𝑎2        (3) 

(4 𝑟)2 = 3 𝑎2          (4) 

𝑎2 =
(4 𝑟)2

3
 ⇒  𝑎 =

4 𝑟

√3
        (5) 

now the packing factor 
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𝑃𝐹 =
𝑣

𝑉
=

2×
4

3
 𝜋 𝑟3

𝑎3
=

8

3

𝜋 𝑟3

(
4 𝑟

√3
)
3 =

√3 𝜋

8
= 0.68 𝑜𝑟 68%               (6) 

bcc structure is a closely packed structure. 

Closest packing: In metallic crystals in which all the atoms are identical, there are 

two forms of closest packing: Face Centered Cubic (FCC) and hexagonal close packed 

(hcp). 

A closest packing is a way of arranging equi-dimensional objects in space so 

that the available space is filled efficiently. Such an arrangement is achieved when 

each object is in contact with the maximum number of like objects. 

 

(iii) FACE CENTERED CUBIC STRUCTURE (FCC) 

In the case of FCC lattice, there are eight atoms at the eight corners of the 

unit cell and six atoms at the Centre’s of six faces. Considering the atom at the face 

centre as origin, it can be observed that this face is common to two-unit cells and 

there are twelve points surrounding it situated at a distance equal to half the face 

diagonal of the unit cell.  

 

Figure Face centered cubic structure 

Thus, the coordination number of FCC lattice is twelve. The atoms touch each 

other along the face diagonal. Each corner atom is shared by 8 surrounding unit cells 

and each of the face Centred atom is shared by 2 surrounding unit cells. Thus, the 

total number of atoms in FCC structure is 𝑛 = (
1

8
× 8 + 6 ×

1

2
) = 4.   
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Atomic packing factor of FCC structure is, 

𝑃𝐹 =
𝑣

𝑉
=

4×
4

3
 𝜋 𝑟3

𝑎3
=

16

3

𝜋 𝑟3

(
4 𝑟

√2
)
3 =

√2 𝜋

6
= 0.74 𝑜𝑟 74%                     (7) 

Copper, aluminum, lead and silver have this structure. 

 

(iv) HEXAGONAL CLOSE PACKED STRUCTURE (HCP) 

The specific hexagonal structure formed by magnesium is shown in Fig. The 

unit cell contains one atom at each corner, one atom each at the centre of the 

hexagonal faces and three more atoms within the body of the cell. Each atom 

touches three atoms in the layer below its plane, six atoms in its own plane, and 

three atoms in the layer above. Hence the coordination number of this structure is 

12.  Further the atoms touch each other along the edge of the hexagon. 

 Thus, 𝑎 = 2 𝑟. 

The top layer contains seven atoms. Each corner atom is shared by 6 

surrounding hexagon cells and the centre atom is shared by 2 surrounding cells. The 

three atoms within the body of the cell are fully contributing to the cell. Thus, the 

total number of atoms in a unit cell is 𝑛 = (
3

2
+

3

2
+ 3) = 6. 

 

Figure Ideal hexagonal close packed structure 

Calculation of c/a ratio for an ideal hexagonal close packed structure: Let ‘c’ 

be the height of the unit cell and ‘a’ be its edge. The three body atoms lie in a 

horizontal plane at c/2 from the orthocenters of alternate equilateral triangles at 
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the top or base of the hexagonal cell. These three atoms just rest on the three atoms 

at the corners of the triangles. 

 

Figure Bottom layer of hcp structure 

In the triangle 𝐴𝐵𝑌 

𝑐𝑜𝑠 3 0∘ =
𝐴𝑌

𝐴𝐵
  ⇒  𝐴𝑌 = 𝑎 𝑐𝑜𝑠 3 0∘ =

𝑎 √3

2
             (8) 

(𝐴𝑍)2 = (𝐴𝑋)2  + (𝑍𝑋)2                (9) 

In triangle 𝐴𝑋𝑍  

𝐴𝑋 =
2

3
𝐴𝑌 =

2

3
 
𝑎 √3

2
=

𝑎

√3
;  𝑍𝑋 =

𝑐

2
                       (10) 

Substituting this in equation (19): 

𝑎2 =
𝑎2

3
+

𝑐2

4
 ⇒  

𝑐2

4
= 𝑎2 −

𝑎2

3
 ⇒  

𝑐2

𝑎2
=

8

3
 𝑜𝑟 

𝑐

𝑎
= [

8

3
]

1

2
       (11) 

Volume of the unit cell: 

Area of the base = six times the area of the triangle 𝐴𝑂𝐵 

Area of the triangle, 𝐴𝑂𝐵 =
1

2
 (𝐵𝑂) (𝐴𝑌) =

1

2
 𝑎 

𝑎 √3

2
 

Thus, area of the base = 6  × 
1

2
 𝑎 

𝑎 √3

2
=

3

2
 √3 𝑎2 

Volume of the cell, 𝑉 =
3

2
 √3 𝑎2 𝑐 

Volume of all the atoms in a unit cell, 𝑣 = 6  × 
4

3
 𝜋 𝑟3 =

24

3
 𝜋  [

𝑎

2
]
3
= 𝜋 𝑎3 

Hence, the packing factor 

𝑃𝐹 =
𝑣

𝑉
=

6×
4

3
 𝜋 𝑟3

3

2
 √3 𝑎2𝑐

=
24

3
 𝜋 (

𝑎

2
)
3

3

2
 √3 𝑎2𝑐

=
2 𝜋

3√3
(
𝑎

𝑐
) =

2 𝜋

3√3
(
3

8
)

1

3
=

√2 𝜋

6
= 0.74 𝑜𝑟 74%   (12) 
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Magnesium, Zinc, and Cadmium have hcp structure 

 

Table Comparison of cell properties of some crystal structure. 

Sr. 
No. 

Crystal 
Specifications 

Sc bcc fcc hcp Diamond 

1 Coordination 
Number 

𝑁 = 6 𝑁 = 8 𝑁 = 12 𝑁 = 12 𝑁 =  4 

2 Nearest 
Neighbour 
distance 

2 𝑟 = 𝑎 
2 𝑟 =

𝑎 √3

2
 2 𝑟 =

𝑎 √2

2
 

2 𝑟 = 𝑎 
2𝑟 =  

𝑎√3

4
 

3 Lattice 
Constant 

𝑎 = 2 𝑟 
𝑎 =

4 𝑟

√3
 𝑎 =

4 𝑟

√2
 

𝑎 = 2 𝑟 
𝑎 =  

8𝑟

√3
 

4 Number of 
atoms per 
unit cell 

𝑛 =
1

8
× 8 = 1 𝑛 =

1

8
× 8 + 1

= 2 

𝑛 =
1

8
× 8 + 3

= 4 

𝑛 = 6 𝑛 = 8 

5 Number of 
lattice points 

= 1 = 2 = 4 = 6 = 8 

6 Volume of all 
the atoms in 
a unit cell 

𝑣

= 1 ×
4

3
 𝜋 𝑟3 

𝑣 = 2 ×
4

3
 𝜋 𝑟3 𝑣 = 4 ×

4

3
 𝜋 𝑟3 𝑣 = 6 ×

4

3
 𝜋 𝑟3 𝑣 = 8 ×

4

3
𝜋𝑟3 

7 Volume of 
unit cell 

𝑉 = 𝑎3

= (2 𝑟)3  
𝑉 = 𝑎3

= (
4 𝑟

√3
)
3

 

𝑉 = 𝑎3

= (
4 𝑟

√2
)
3

 

𝑉 = 𝑎3

= (2 𝑟)3  
𝑉 =  𝑎3 

= (
8𝑟

√3
)
3

 

8 Number of 
atoms per 
unit volume 

1

𝑎3
 

2

𝑎3
 

4

𝑎3
 

4

√3 𝑎2 𝑐
 

8

𝑎3
 

9 Atomic 
radius 

𝑎

2
 𝑎 √3

4
 

𝑎 √2

4
 

𝑎

2
  

𝑎√3

8
 

10 Atomic 
Packing 
Fraction 
(APF) 

𝜋

6
= 0.52 √3 𝜋

8
= 0.68 

√2 𝜋

6
= 0.74 

√2 𝜋

6
= 0.74  

ᴫ√3

16
 

= 0,34 

11 Examples Polonium Sodium, 
Lithium, 
Chromium 

Aluminum, 
Copper, 
Silver 
 

Magnesium, 
Zinc, 
Cadmium 
 

Germanium, 
Silicon, 
Carbon 

 

RELATIONSHIP BETWEEN THE DENSITY OF CRYSTAL MATERIAL AND LATTICE 

CONSTANT IN A CUBIC LATTICE:  

 Consider a cubic crystal of lattice constant a.  the number of atoms pe unit 

cell be n and 𝜌 be the density of the crystal material.  The atomic weight of the 

material is MA.  let NA be the Avogadro’s number.  Thus, [
𝑀𝐴

𝜌
] m3 of the material will 

contain NA atoms.  Hence n atoms in a unit cell will occupy a volume  [
𝑀𝐴𝑛

𝜌𝑁𝐴
], 
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Thus,  𝑎3 = 
𝑀𝐴 𝑛

𝜌𝑁𝐴
;  𝑜𝑟 𝜌 =

𝑀𝐴 𝑛

𝑁𝐴𝑎3
 ; 𝑜𝑟 𝑎 = [

𝑀𝐴 𝑛

𝜌𝑁𝐴
]
1

3⁄
 

 

OTHER CUBIC STRUCTURES: 

  

i) DIAMOND CUBIC STRUCTURE 

The diamond lattice can be considered to be formed by interpenetrating two 

FCC lattices along the body diagonal by (1/4)th cube edge.  One sublattice has origin 

at point (0,0,0,) and the other at a point quarter of the way along the body diagonal 

at the point (a/4, a/4, a/4).  The basic diamond lattice and the atomic positions in 

the cubic cell of diamond projected on cube face are shown in figure. 

                                                                          

                                                                                       

     The fractions denote height about the base in units of cube edge.  The point at 0 

and ½ are on the FCC lattice, those at ¼ and ¾ are on a similar lattice displaced 

among the body diagonals by ¼ of the cube edge.  The packing factor of this 

structure is  

                 (𝑋𝑌)2 = (
𝑎

4
)
2
+ (

𝑎

4
)
2
= (

𝑎

8
)
2

                                                                        

                 (𝑋𝑍)2 = (𝑋𝑌)2 + (𝑌𝑍)2 = (
𝑎

8
)
2
+ (

𝑎

16
)
2
= (

3𝑎

16
)
2
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But,            XZ       = 2r 

 Therefore, (2𝑟)2 = 
3𝑎2

16
      

The nearest neighbour distance  

                         2𝑟 =  
√3𝑎

4
 

Lattice constant,  𝑎 =  
8𝑟

√3
 

 

Packing factor = 
𝑣

𝑉
= 

8𝑋 
4

3
𝜋𝑟3 

𝑎3
= 

32

3
 
𝜋𝑟33√3

(8𝑟)3
 =  

𝜋√3

16
  =   0.34 𝑜𝑟 34% 

Thus, it is a loosely packed structure.     

                        

ii) CUBIC ZINC SULPHIDE OR ZINC BLENDE STRUCTURE 

 Zinc blende structure is almost identical to diamond structure except that the 

two interpenetrating FCC sublattices are of different atoms and displaced from each 

other by one quarter of the body diagonal. 

 

four equally distant atoms of opposite kind arranged at a regular tetrahedron.  The 

compounds which have cubic zinc sulphide CdS. 

  

iii) SODIUM CLORIDE STRUCTURE 

 in sodium chloride, sodium loses its outer electron and acquires ion excess of 

positive charge while the chloride atom accepts one electron from sodium and 

becomes a negative ion.  Now, due to the electrostatic forces between the excess    

The cubic zinc sulphide structure results when 

zinc atoms are placed on one FCC lattice and S 

atoms on the other FCC lattice as shown in 

figure.  The conventional cell of this structure 

is a cube.  There are four molecules per 

conventional cell.  For each atom, there are    
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Face Centred Cube with basis of one Na ion and one Cl ion separated by one – half 

the body diagonal pf the unit cell.  There are four molecules of NaCl in a unit cell, 

with ions in the positions: 

    

 𝑁𝑎:  
1

2

1

2

1

2
 ; 00

1

2
 ; 0

1

2
0 ;  

1

2
00 

𝐶𝑙 ∶ 000; 
1

2

1

2
0 ; 

1

2
0
1

2
 ; 0

1

2

1

2
 

 

 In this structure, each ion is surrounded by six nearest neighbours of the 

opposite kind.  The coordination number is six.  There are twelve next nearest 

neighbours of the same kind as the reference ion.  Representative crystals having 

NaCl structure are KCl, KBr, MgO, AgBr, etc. 

 

 

 

 

 

 

 

 

charges, the two ions attract each other.  

Further, due to the strong forces of repulsion 

as their outer electron shells come into close 

proximity, the two ions cannot approach each 

other to within less than certain distance.  

When attraction and repulsion balance, 

equilibrium is obtained.  The Bravais lattice is 

a Face Centred Cube, 
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iv) CAESIUM CHLORIDE STRUCTURE 

                                                                              

                   

 

by Cs+ ions and the other Cl- ions.  CsCl, RbCl and LiHg, are some materials 

crystallizing in this structure.   

 

DIRECTION PLNES AND, MILLER INDICES 

In a crystal there exists directions and planes which contain a large 

concentration of atoms. It is necessary to locate these directions and planes for 

crystal analysis. In Fig., two directions are shown by arrows in two dimensions. 

 

Figure  Crystal directions. 

These directions pass through the origin 0 and end at A and B respectively. 

The directions described by giving the coordinates of the first whole numbered point 

(x, y) through which each of the directions passes. For direction OA, it is (1, 1) and 

The space lattice is simple cubic.  The basis 

has one Cs+ ion at 0 0 0 and one Cl- at 
1

2

1

2

1

2
. 

Each ion is the centre of a cube of ions of the 

opposite kind, the coordination number is 

thus eight.  The lattice points of CsCl are two 

interpenetrating simple cubic lattices, the 

corner of one substance is the bcc of the 

other.  One sublattice is occupied   
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for OB it is (3, 1). In three-dimensions, the directions are described by the 

coordinates of the first whole numbered point (x, y, z). Generally, square brackets 

are used to indicate a direction. A few directions are  

OA [1 10]; OB [0 1 0]; OC [1 1 1]; OD [1 0 2]; OE [ 1 1 2] 

 

  

 (a) Different crystal   planes   
 

 

that how to designate these planes in a crystal. Miller evolved a method to designate 

a set of parallel planes in a crystal by three numbers (h k l) known as Miller indices.  

  

 

(i) Determine the coordinates of the intercepts made by the plane along the three 

crystallographic axes (x, y, z axes) 

𝑥    𝑦   𝑧 

2𝑎  3𝑏  𝑐 

𝑝𝑎  𝑞𝑏  𝑟𝑐 

Where 𝑝 = 2,  𝑞 = 3 and 𝑟 = 1 

The crystal lattice may be regarded 

as made-up or an aggregate of a set of 

parallel equidistant planes, passing 

through the lattice points, which are 

known as lattice planes. For a given lattice, 

the lattice planes can be chosen in different 

ways as shown in figure.  The problem is  

The steps in the determination 

of Miller indices of a set of 

parallel planes are illustrated 

with the aid of Figure. 
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 (ii) Express the intercepts as multiples of the unit cell dimensions, or lattice 

parameters along the axes, 

2𝑎

𝑎
  

3𝑏

𝑏
  

𝑐

𝑐
 

2     3    1 

(iii) Determine the reciprocal of these numbers 

1

2
  

1

3
  

1

1
 

(iv) Reduce these reciprocals to the smallest set of integral numbers and enclose 

them in brackets: 

6 ×
1

2
  6 ×

1

3
  6 ×

1

1
 

(3 2 6) 

In general, it is denoted by (h k l). We also notice that: 

1

𝑝
:
1

𝑞
:
1

𝑟
= ℎ: 𝑘: 𝑙 

1

2
:
1

3
:
1

1
= 3: 2: 6 

Thus, Miller indices may be defined as the reciprocals of the intercepts made by the 

plane on the crystallographic axes when reduced to smallest numbers. 

 

IMPORTANT FEATURES OF MILLER INDICES OF CRYSTAL PLANES 

(i) All the parallel equidistant planes have the same Miller indices. Thus, the Miller 

indices define a set of parallel planes. 

(ii) A plane parallel to one of the coordinate axes has an intercept of infinity. 

(iii) If the Miller indices of two planes have the same ratio (i.e., 844 and 422 or 211), 

then the planes are parallel to each other. 

(iv) If (ℎ 𝑘 𝑙) are the Miller indices of a plane, then the plane cuts the axes into h, k 

and l equal segments respectively. 
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IMPORTANT PLANES AND DIRECTIONS IN A CUBIC CRYSTAL 

 

Figure a  

Type equation here. 

Figure b 

 

Figure c Planes and directions in a cubic system 

 

In figure a, the plane cuts the Y–axis at 

∞ and Z–axis ∞.  Therefore, the 

coordinates of the intercepts of the 

plane are ∞.  That is ∞, 1 and ∞ are the 

intercept as the multiples of the unit 

cell dimensions.  Take the reciprocals, 

1

∞
, 1, 𝑎𝑛𝑑 

1

∞
, or 0, 1, 0.  Hence (0 1 0) 

are the miller indices of the plane and, 

(0 1 0) plane is perpendicular to [0 1 0] 

direction, (1 1 0) and (1 1 1) planes are 

shown in figure b and in figure c.  Also 

figure b and figure c shows [1 1 0] and 

[1 1 1] directions respectively. 



 CRYSTAL PHYSICS AND X RAY DIFFRACTION 

33 
 

SEPARATION BETWEEN LATTICE PLANES IN A CUBIC CRYSTAL 

The cube edge is a. Let (ℎ 𝑘 𝑙) be the Miller indices of the plane𝐴 𝐵 𝐶. This 

plane belongs to a family of planes whose miller indices are (ℎ 𝑘 𝑙) because Miller 

indices represent a set of planes. Let 𝑂𝑁 = 𝑑1 be the perpendicular distance of the 

plane 𝐴 𝐵 𝐶 from the origin. Let 𝛼′, 𝛽′and 𝛾′ (different from the interfacial angles 

𝛼,  𝛽and 𝛾) be the angles between coordinates axes 𝑋,  𝑌,  𝑍respectively and 𝑂𝑁. 

The intercept of the plane on the three axes are 

𝑂𝐴 =
𝑎

ℎ
,  𝑂𝐵 =

𝑎

𝑘
, and 𝑂𝐶 =

𝑎

𝑙
  

      

From fig (a) we have 

𝑐𝑜𝑠 𝛼′ =
𝑑1

𝑂𝐴
,  𝑐𝑜𝑠 𝛽′ =

𝑑1

𝑂𝐵
, and 𝑐𝑜𝑠 𝛾 ′ =

𝑑1

𝑂𝐶
 

                                                                                     

From fig (b) we have, 

(𝑂𝑁)2 = 𝑥2 + 𝑦2 + 𝑧2 = 𝑑1
2 = 𝑑1

2(𝑐𝑜𝑠2 𝛼 ′) + 𝑑1
2(𝑐𝑜𝑠2 𝛽′) + 𝑑1

2(𝑐𝑜𝑠2 𝛾 ′) 

(𝑂𝑁)2 = 𝑑1
2 = 𝑑1

2[(𝑐𝑜𝑠2 𝛼 ′) + (𝑐𝑜𝑠2 𝛽′) + (𝑐𝑜𝑠2 𝛾 ′)]    

  

𝑑1 = 𝑑1[(𝑐𝑜𝑠
2 𝛼 ′) + (𝑐𝑜𝑠2 𝛽′) + (𝑐𝑜𝑠2 𝛾 ′)]

1

2       
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But, 𝑐𝑜𝑠2 𝛼 ′ + 𝑐𝑜𝑠2 𝛽′ + 𝑐𝑜𝑠2 𝛾 ′ = 1        

Substituting value of cosα’, cosβ’and cosγ’ in above equation we get, 

[
𝑑1

𝑂𝐴
]
2
+ [

𝑑1

𝑂𝐵
]
2
+ [

𝑑1

𝑂𝐶
]
2
= [

𝑑1ℎ

𝑎
]
2
+ [

𝑑1𝑘

𝑎
]
2
+ [

𝑑1𝑙

𝑎
]
2
=

𝑑1
2

𝑎2
(ℎ2 + 𝑘2 + 𝑙2) = 1  

𝑑1
2 =

𝑎2

(ℎ2+𝑘2+𝑙2)
          

𝑑1 =
𝑎

√ℎ2+𝑘2+𝑙2
          

Let 𝑂𝑀 = 𝑑2be the perpendicular distance of the next plane PQR parallel to ABC, 

the intercept of this plane on the three crystallographic axes are, 

𝑂𝐴′ =
2𝑎

ℎ
,  𝑂𝐵′ =

2𝑎

𝑘
, and 𝑂𝐶 ′ =

2𝑎

𝑙
       

𝑐𝑜𝑠 𝛼′ =
𝑑2

𝑂𝐴
,  𝑐𝑜𝑠 𝛽′ =

𝑑2

𝑂𝐵
, and 𝑐𝑜𝑠 𝛾 ′ =

𝑑2

𝑂𝐶
                               X   

  

(𝑂𝑀)2 = 𝑑1
2 = 𝑑2

2(𝑐𝑜𝑠2 𝛼 ′) + 𝑑2
2(𝑐𝑜𝑠2 𝛽′) + 𝑑2

2(𝑐𝑜𝑠2 𝛾 ′)    

  

𝑑2
2 = 𝑑2

2[(𝑐𝑜𝑠2 𝛼 ′) + (𝑐𝑜𝑠2 𝛽′) + (𝑐𝑜𝑠2 𝛾 ′)]       

𝑑2 = 𝑑2[(𝑐𝑜𝑠
2 𝛼 ′) + (𝑐𝑜𝑠2 𝛽′) + (𝑐𝑜𝑠2 𝛾 ′)]

1

2      

But, 𝑐𝑜𝑠2 𝛼 ′ + 𝑐𝑜𝑠2 𝛽′ + 𝑐𝑜𝑠2 𝛾 ′ = 1        

Substituting this in equation X we get, 

[
𝑑2ℎ

2𝑎
]
2
+ [

𝑑2𝑘

2𝑎
]
2
+ [

𝑑2𝑙

2𝑎
]
2
=

𝑑2
2

4𝑎2
(ℎ2 + 𝑘2 + 𝑙2) = 1      

𝑑2
2 =

4 𝑎2

(ℎ2+𝑘2+𝑙2)
          

𝑑2 =
2 𝑎

√ℎ2+𝑘2+𝑙2
          

Thus, the inter planner spacing between two adjacent parallel planes of Miller 

indices (ℎ 𝑘 𝑙) is given by, 

𝑑 = 𝑑2 − 𝑑1 =
𝑎

√ℎ2+𝑘2+𝑙2
         


