
US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 1 of 29

What is Microsoft .NET?
 Microsoft .NET (pronounced “dot net”) is a software component that runs on the

Windows operating system. .NET provides tools and libraries that enable developers to
create Windows software much faster and easier. .NET benefits end-users by providing
applications of higher capability, quality and security. The .NET Framework must be
installed on a user’s PC to run .NET applications.

 .NET technology provides the ability to quickly build, deploy, manage, and use
connected, security-enhanced solutions with Web services

What is VB.Net?
 Visual Basic .NET (VB.NET), is an object-oriented computer programming language

that can be viewed as an evolution of the classic Visual Basic (VB), which is
implemented on the .NET Framework

 It is the next generation of the visual Basic language.
 It supports OOP concepts such as abstraction, inheritance, polymorphism, and

aggregation.
.NET Framework Architecture :-

A programming infrastructure created by Microsoft for building, deploying, and running
applications and services that use .NET technologies, such as desktop applications and
Web services

1) It is a platform for application developers.
2) It is tiered, modular, and hierarchal.
3) It is a service or platform for building, deploying and running applications.
4) It consists of 2 main parts: Common language runtime and class libraries.
 The common language runtime is the bottom tier, the least abstracted.
 The .NET Framework is partitioned into modules, each with its own distinct

responsibility.
 The architectural layout of the .NET Framework is illustrated in following figure:

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 2 of 29

Figure 1 An overview of the .NET architecture.

Here we examine the following key components of the .NET Framework:
1) Common Language Infrastructure (CLI): The purpose of the Common Language

Infrastructure (CLI) is to provide a language-neutral platform for application development
and execution, including functions for Exception handling, Garbage Collection, security, and
interoperability.

2) Common Language Runtime (CLR): The .NET Framework provides a runtime
environment called the Common Language Runtime or CLR (similar to the Java Virtual
Machine or JVM in Java), which handles the execution of code and provides useful services
for the implementation of the program.

The CLR is the execution engine for .NET applications and serves as the interface between .NET
applications and the operating system. The CLR provides many services such as:

 Loads and executes code
 Converts intermediate language to native machine code
 Manages memory and objects
 Enforces code and access security
 Handles exceptions
 Interfaces between managed code, COM objects, and DLLs
 Provides type-checking
 Provides code meta data (Reflection)
 Provides profiling, debugging, etc.
 Separates processes and memory

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 3 of 29

3) Framework Class Library (FCL): It is also known as a base class library. The FCL is a

collection of over 7000 reusable classes, interfaces, and value types that enable .NET
applications to :

a) read and write files,
b) access databases,
c) process XML,
d) display a graphical user interface,
e) draw graphics,
f) use Web services, etc.

 The .Net Framework class library (FCL) organized in a hierarchical tree structure and it
is divided into Namespaces. Namespaces is a logical grouping of types for the purpose of
identification. Framework class library (FCL) provides the consistent base types that are
used across all .NET enabled languages. The Classes are accessed by namespaces, which
reside within Assemblies.

 Other name of FCL is BCL – Base Class Library
4) Common Type System (CTS)

1) CTS allows written in different programming to easily share to information.

2) A class written in C# should be equivalent to a class written in VB.NET.

3) Languages must agree on the meanings of these concepts before they can integrate

with one and other.

4) CLS forms a subset of Common type system this implies that all the rules that for

apply to Common type system apply to common language specification.

5) It defines rules that a programming language must follow to ensure that objects

written in different programming languages can interact which each other.

6) Common type system provide cross language integration.

 The common type system supports two general categories of types:
a) Value Type
b) Reference Type

a) Value Type: Stores directly data on stack. In built data type. For ex. Dim a as integer.
b) Reference Type: Store a reference to the value’s memory address, and are allocated on

the heap. For ex: dim obj as new oledbconnection.
 The Common Language Runtime (CLR) can load and execute the source code written in

any .Net language, only if the type is described in the Common Type System (CTS)

7) Common Language Specification (CLS)

The CLS is a common platform that integrates code and components from multiple .NET
programming languages. In other words, a .NET application can be written in multiple
programming languages with no extra work by the developer (though converting code between
languages can be tricky).

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 4 of 29

.NET includes new object-oriented programming languages such as C#, Visual Basic .NET, J# (a
Java clone) and Managed C++. These languages, plus other experimental languages like F#, all
compile to the Common Language Specification and can work together in the same application.

 CLS includes basic Language features needed by almost all the application

 It serves as a guide for Library Writers and Compiler Writer.

 The Common Language Specification is a subset of the common type system (CTS).

 The common language specification is also important to application to who are writing

codes that will be used by other developers.

 CLS a series of basic rules that are required for language integration.

8) Microsoft Intermediate Language:
 When you compile your Visual Basic .NET source code, it is changed to an intermediate

language (IL) that the CLR and all other .NET development environments understand.
 All .NET languages compile code to this IL, which is known as Microsoft Intermediate

Language, MSIL, or IL.
 MSIL is a common language in the sense that the same programming tasks written with

different .NET languages produce the same IL code.
 At the IL level, all .NET code is the same regardless of whether it came from C++ or

Visual Basic.
 When a compiler produces Microsoft Intermediate Language (MSIL), it also produces

Metadata.
 The Microsoft Intermediate Language (MSIL) and Metadata are contained in a portable

executable (PE) file.
 Microsoft Intermediate Language (MSIL) includes instructions for loading, storing,

initializing, and calling methods on objects, as well as instructions for arithmetic and
logical operations, control flow, direct memory access, exception handling, and other
operations

Advantages :
 It offers cross− language integration, including cross− language inheritance, which

allows you to create a new class by deriving it from a base class written in another
language.

 It facilitates automatic memory management, known as garbage collection.
 compilation is much quicker
 It allows you to compile code once and then run it on any CPU and operating system

that supports the runtime.
Disadvantages:

 IL is not compiled to machine, so it can more easily be reverse engineered. Defense
mechanisms for handling this are likely to follow shortly after the .NET Framework is
officially released.

 While IL is further compiled to machine code, a tiny percentage of algorithms will
require a direct unwrapped access to system resources and hardware.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 5 of 29

 Figure: 2 shows what happens to your code from its inception in Visual Studio to

execution.

Figure 2 : Following the IL

The Just-In-Time Compiler

 Your code does not stay IL for long, however. It is the PE file, containing the IL that can
be distributed and placed with the CLR running on the .NET Framework on any
operating system for which the .NET Framework exists, because the IL is platform
independent. When you run the IL, however, it is compiled to native code for that
platform. Therefore, you are still running native code. The compilation to native code
occurs via another tool of the .NET Framework: the Just-In-Time (JIT) compiler.

 With the code compiled, it can run within the Framework and take advantage of low level
features such as memory management and security. The compiled code is native code for
the CPU on which the .NET Framework is running. A JIT compiler will be available for
each platform on which the .NET Framework runs, so you should always be getting
native code on any platform running the .NET Framework.

 Just-in-time compilation (JIT), also known as dynamic translation, is a method to
improve the runtime performance of computer programs. Historically, computer
programs had two modes of runtime operation, either interpreted or static (ahead-of-time)
compilation. Interpreted code is translated from a high-level language to a machine code
continuously during every execution, whereas statically compiled code is translated into
machine code before execution, and only requires this translation once.

 JIT compilers represent a hybrid approach, with translation occurring continuously, as
with interpreters, but with caching of translated code to minimize performance
degradation. It also offers other advantages over statically compiled code at development
time, such as handling of late-bound data types and the ability to enforce security
guarantees.

 The Common Language Runtime (CLR) provides various Just In Time compilers (JIT)
and each works on a different architecture depending on Operating System. That is why
the same Microsoft Intermediate Language (MSIL) can be executed on different
Operating Systems without rewrite the source code.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 6 of 29

 Just In Time (JIT) compilation preserves memory and save time during initialization of
application.

 Just In Time (JIT) compilation is used to run at high speed, after an initial phase of slow
interpretation.

 Just In Time Compiler (JIT) code generally offers far better performance than
interpreters.

 There are three types of JIT:
1) Pre JIT
2) Econo JIT
3) Normal JIT

1) Pre JIT: It converts all the code in executable code in a single cycle and it is slow.
2) Econo JIT: It will convert the called executable code only. But it will convert code every

time when a code is called again.
3) Normal JIT: It will only convert the called code and will store in cache so that it will not

require converting code again. Normal JIT is fast.

.NET Languages
 .Net languages are CLI computer programming languages that may also optionally use

the .NET Framework Base Class Library and which produce programs that execute
within the Microsoft .NET Framework. Microsoft provides several such languages,
including C#, F#, Visual Basic .NET, and Managed C++.

 Generally .NET languages call into two main categories, TypeSafe Languages (such as
C#) and Dynamic Languages (Such as Python). Type Safe Languages are built on the
.NET Common Language Runtime and Dynamic Languages are built on top of the .NET
Dynamic Language Runtime. The .NET Framework is unique in its ability to provide this
flexibility.

 Regardless of which .NET language is used, the output of the language compiler is a
representation of the same logic in an intermediate language named Common
Intermediate Language (CIL).

 As the program is being executed by the CLR, the CLI code is compiled and cached, just
in time, to the machine code appropriate for the architecture on which the program is
running. This last compilation step is usually performed by the Common Language
Runtime component of the framework “just in time” (JIT) at the moment the program is
first invoked, though it can be manually performed at an earlier stage.

Microsoft Intermediate Language (MSIL)
 MSIL or IL(Intermediate Language) is machine independent code generated by .NET

framework after the compilation of program written in any language by user.
 MSIL or IL is now known as CIL(Common Intermediate Language).
 One of the more interesting aspects of .NET is that when you compile your code, you do

not compile to native code. But the compilation process translates your code into
something called Microsoft intermediate language, which is also called MSIL or just IL.

 The compiler also creates the necessary metadata and compiles it into the component.
This IL is CPU independent. After the IL and metadata are in a file, this compiled file is
called the PE, which stands for either portable executable or physical executable.
Because the PE contains your IL and metadata, it is therefore self-describing, eliminating
the need for a type library or interfaces specified with the Interface.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 7 of 29

.NET Assembly
 Whatever .NET language you create applications with, compilers generate an assembly,

which is a file containing .NET executable code and is composed essentially by two
kinds of elements: MSIL code and metadata.

 The .NET assembly is the standard for components developed with the Microsoft.NET.
Dot NET assemblies may or may not be executable, i.e., they might exist as the
executable (.exe) file or dynamic link library (DLL) file.

 All the .NET assemblies contain the definition of types, versioning information for the
type, meta-data, and manifest. The designers of .NET have worked a lot on the
component (assembly) resolution.

The structure of an assembly: Assemblies contain code that is executed by the Common
Language Runtime.

Figure 3 : A diagram of assembly
 Assemblies are made up of the following parts:

a) The assembly manifest
b) Type metadata
c) Microsoft Intermediate Language (MSIL) code

 The assembly manifest is where the details of the assembly are stored. The assembly is
stored within the DLL or EXE itself. Assemblies can either be single or multiple file
assemblies and, therefore, assembly manifests can either be stored in the assembly or as a
separate file. The assembly manifest also stores the version number of the assembly to
ensure that the application always uses the correct version.

 The metadata contains information on the types that are exposed by the assembly such as
security permission information, class and interface information, and other assembly
information.

Contents of an Assembly:
a) Assembly Manifest
b) Assembly Name
c) Version Information
d) Types
e) Cryptographic Hash
f) Security Permissions

An assembly does the following functions:
 It contains the code that the runtime executes.
 It forms a security boundary. An assembly is the unit at which permissions are requested

and granted.
 It forms a type boundary. Every type’s identity includes the name of the assembly at

which it resides.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 8 of 29

 It forms a reference scope boundary. The assembly's manifest contains assembly
metadata that is used for resolving types and satisfying resource requests.

 It forms a version boundary. The assembly is the smallest version able unit in the
common language runtime; all types and resources in the same assembly are versioned as
a unit.

 It forms a deployment unit. When an application starts, only the assemblies the
application initially calls must be present. Other assemblies, such as localization
resources or assemblies containing utility classes, can be retrieved on demand. This
allows applications to be kept simple and thin when first downloaded.

 It is a unit where side-by-side execution is supported.
There are two kinds of assemblies in .NET

a) Private
b) Shared

a) Private assemblies is the assembly which is used by application only, normally it resides
in your application folder directory.

b) Shared assemblies - It resides in GAC, so that anyone can use this assembly. Public
assemblies are always share the common functionalities with other applications.

 An assembly can be a single file or it may consist of the multiple files. In case of multi-
file, there is one master module containing the manifest while other assemblies exist as
non-manifest modules. A module in .NET is a sub part of a multi-file .NET assembly.
Assembly is one of the most interesting and extremely useful areas of .NET architecture
along with reflections and attributes, but unfortunately very few people take interest in
learning such theoretical looking topics.

The .NET Framework Namespaces
 . Net framework class library is a collection of namespaces.
 Namespace is a logical naming scheme for types that have related functionality.
 Namespace means nothing but a logical container or partition.
 For example: My computer contains C:, D:, E: and F: Each drive contains 1.txt file. The

file 1.txt is available in all the drive so it is require to specify the drive name to locate the
actual required file.

 At the top of the hierarchy is the System namespace.
 A namespace is just a grouping of related classes. It's a method of putting classes inside a

container so that they can be clearly distinguished from other classes with the same name.
 A namespace is a logical grouping rather than a physical grouping. The physical grouping

is accomplished by an assembly
 The .NET CLR consists of multiple namespaces, which are spread across many

assemblies. For example, ADO.NET is the set of classes located in the System.Data
namespace, and ASP.NET is the set of classes located in the System.Web namespace.
In the CLR, the classes and structures contained in each of the namespaces represent a
common theme of development responsibility.

 .NET Framework class library is collection of namespaces.
 Following table shows Common Namespaces supported by .NET

System Contains fundamental classes and base classes.
System.IO Contains classes for reading and writing data in file.
System.XML Contains classes work with XML.
System.Windows.Forms Contains classes for windows-based applications.
System.Data Contains classes for the database connection.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 9 of 29

Figure 4: .Net namespaces

VB.NET - Introduction
 Microsoft .NET is a software component that runs on the Windows operating system.
 .NET provides tools and libraries that enable developers to create Windows software

much faster and easier. .NET benefits end-users by providing applications of higher
capability, quality and security.

 This is how Microsoft describes it: “.NET is the Microsoft Web services strategy to
connect information, people, systems, and devices through software. Integrated across the
Microsoft platform, .NET technology provides the ability to quickly build, deploy,
manage, and use connected, security-enhanced solutions with Web services.

 VB .NET is an object-oriented computer programming language that can be viewed as an
evolution of the classic Visual Basic (VB), which is implemented on the .NET
Framework.

 Visual Basic 2008 version 9.0 was released together with the Microsoft .NET Framework
3.5

Why .NET?
 Interoperability between language and execution environment.
 Uniformity in schema or formats for Data exchange using XML, XSL (Extensible Style

Sheet Language)
 Extend or use existing code that is valid.
 Programming complexity of environment is reduced
 Multiplatform applications, automatic resource management simplification of application

deployment.
 It provides security like – code authenticity check, resources access authorizations,

declarative and imperative security and cryptographic security methods for embedding
into user’s application.

 The .Net platform is on integral component a new and simplified model for programming
and deploying application on the windows platform.

 .Net development framework provides a new and simplified model for programming and
deploying applications on the windows platform.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 10 of 29

Compilation and Execution

Figure 5: Compilation and Execution Process

Solutions and Projects
 In VB.Net project groups are known as solutions.
 By default, when you create a new project in VB.Net, then visual basic creates a new

solution first and then adds a project to that solution.
File Extensions used in VB.Net

 When you save a solution, the file extension is “.sln” and all projects in the solution are
saved with extension “.vbproj”.

 Most popular file extension is “.vb”

Types of projects:
The following list provides a comparison of Visual Basic 6.0 and Visual Basic .NET project
types.

Visual Basic 6.0 Visual Basic .NET
Standard EXE Windows Application

ActiveX DLL Class Library

ActiveX EXE Class Library

ActiveX Control Windows Control Library

ActiveX Document
No equivalent. Visual Basic .NET can interoperate with ActiveX
Documents.

DHTML Application No equivalent. Use ASP.NET Web Application.

IIS Application (Web
Class)

No equivalent. Use ASP.NET Web Application.

The Visual Basic projects you can create are as follows:

 Windows Application Windows standard thick client applications based on forms (EXE)
 Class Library For individual classes or collections of classes (DLL)
 Windows Control Library Controls and components for Windows Forms (classic)
 . ASP.NET Web Application ASP.NET−based application composed of static or

dynamic HTML pages

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 11 of 29

 ASP.NET Web Service For Web services to be used by clients communicating over the
HTTP protocol

 Web Control Library Web−based controls for ASP.NET applications
 Console Application Your standard Console application
 Windows Service Create Windows services
 Empty Project Empty Windows application project
 Empty Web Project Empty Web server−based application

Visual Basic Integrated Development Environment:
Start Page

 User can use the start page to select from recent projects
 By default ‘Get Started’ item is selected in the start page.
 User can create new project or open existing project from recent project item.

Toolbars
 This feature is another handy aspect of the IDE.
 These appear near the top of the IDE.
 IDE displays tool tips, it becomes easy to know which button performs which operation.
 Toolbars provides a quick way to select menu item.

Graphical Designer
 VB.Net can display those elements which will look like at run time.
 Different types of graphical designers including.

a) windows form designers
b) web form designers
c) compact designers
d) XML designers

 From tools menu select options options dialog box will open from that select
“Window Form Designer” folder display possible options.

The Object Explorer

 This tool lets you look at all the members of an object at once
 The Object Explorer helps open up any mysterious objects that Visual Basic has added to

your code so you can see what's going on inside.
 To open the Object Explorer, select View Other Windows Object Explorer
 The Object Explorer shows all the objects in your program and gives you access to what's

going on in all of them.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 12 of 29

Figure 6: VB .NET IDE

The Menu
 Visual Studio .NET's menu is dynamic, meaning that items will be added or removed

depending on what you are trying to do. The menu bar consist of the following options:

File: With this menu you can create a new project, open existing one, save the current
 project ,exit form the vb.net etc
Edit: The Edit menu provides access to the items you would expect: Undo, Redo, Cut, Copy,
Paste, and Delete.
View: The View menu provides quick access to the windows that make up the IDE, such as the
Solution Explorer, Properties window, Output window, Toolbox, etc.
Project: The Project menu allows you to add various extra files to your application.
Build: The Build menu becomes important when you have completed your application and want
to be able to run it without the use of the Visual Basic .NET environment.
Debug: The Debug menu allows you to start and stop running your application within the Visual
Basic .NET IDE. It also gives you access to the Visual Studio .NET debugger.
Data: The Data menu helps you use information that comes from a database. It only appears
when you are working with the visual part of your application ,not when you are writing code.
Format: The Format menu also only appears when you are working with the visual part of your
application. Items on the Format menu allow you to manipulate how the windows you create will
appear to the users of your application.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 13 of 29

Tools : The Tools menu has commands to configure the Visual Studio .NET IDE, as well as
links to other external tools that may have been installed.
Window: The commands on this menu allow you to change the physical layout of the windows
in the IDE.
Help: The Help menu provides access to the Visual Studio .NET documentation.

Code Designers

 You can use the tabs at the top center of the IDE to switch between graphical designer
and code designer

 From view menu, you can also switch between by using code (F7) and Designer
(Shift+F7) items.

 From solution Explorer, from the left side you can use top two buttons.
 At the top of code designer two drop down list boxes are available. The two drop-down

list boxes at the top of the code designer; the one on the left lets you select what object's
code you're working with, and the one on the right lets you select the part of the code that
you want to work on, letting you select between the declarations area, functions, Sub
procedures, and methods.

Figure 7: Code Designer Window

IntelliSense
 One useful feature of VB .NET code designers is Microsoft's IntelliSense. IntelliSense

are those boxes that open as you write your code, listing all the possible options and even
completing your typing for user.

 IntelliSense is made up of a number of options, including:
 List Members-Lists the members of an object.
 Parameter Info-Lists the arguments of procedure calls.
 Quick Info-Displays information in tool tips as the mouse rests on elements in your code.
 Complete Word-Completes typed words.
 Automatic Brace Matching-Adds parentheses or braces as needed.
 you can turn various parts of IntelliSense off if you want; just select the Tools Options

menu item, then select the Text Editor folder, then the Basic subfolder, and finally the
General item in the Basic subfolder.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 14 of 29

Figure 8 : Intellisense

The Toolbox
 It is available on left side of IDE.
 It uses tabs to divide its contents into categories like marked Data, Components,

Windows Forms, and General.
 The Data, Components, Windows Forms, and General tabs appear when you're working

with a Windows form in a Windows form designer, but when you switch to a code
designer in the same project, all you'll see are General and Clipboard Ring in the toolbox.
When you're working on a Web form, you'll see Data, Web Forms, Components,
Components, HTML, Clipboard Ring, and General, and so on.

 The Data tab displays tools for creating datasets and making data connections.
 The Windows Forms tab displays tools for adding controls to Windows forms and so on.
 The General tab is empty by default, and is a place to store general components, controls,

and fragments of code in.

 The Solution Explorer

 It is available on right top corner of IDE
 This tool displays a hierarchy-with the solution at the top of the hierarchy, the projects

one step down in the hierarchy, and the items in each project as the next step down.
 You can set the properties of various items in a project by selecting them in the Solution

Explorer and then setting their properties in the properties window. And you can set
properties of solutions and projects by right-clicking them and selecting the Properties
item in the menu that appears, or you can select an item and click the properties button,
which is the right-most button at the top of the Solutions Explorer.

 User can switch between graphical and code designers by using the buttons that appear at
top left in the Solution Explorer

 You can right-click a solution and add a new project to it by selecting the AddNew
Project menu item in the popup menu that appears. And you can specify which of
multiple projects runs first-that is, is the startup project or projects-by right-clicking the
project and selecting the Set As Startup Object item, or by right-clicking the solution and
selecting the Set Startup Projects item.

 With this tool user can also add new item
 By clicking on see all button, solution explorer will shows all files available with current

project.
 Refresh button is also available.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 15 of 29

The Class View Window
 If you click the Class View tab under the Solution Explorer, you'll see the Class View

window, This view presents solutions and projects in terms of the classes they contain,
and the members of these classes.

 Using the Class View window gives you an easy way of jumping to a member of class
that you want to access quickly-just find it in the Class View window, and double-click it
to bring it up in a code designer.

The Properties Window
 The Properties window is divided into two columns of text, with the properties on the

left, and their settings on the right.
 From drop-down list box at top of properties window, user can select any object which is

available in current form.
 When you select a property, Visual Basic will give you an explanation of the property in

the panel at the bottom of the Properties window. And you can display the properties
alphabetically by clicking the second button from the left at the top of the Properties
window, or in categories by clicking the left-most button.

The Dynamic Help Window
 The window that shares the Properties window's space, however, is quite new-the

Dynamic Help window. Visual Basic .NET includes the usual Help menu with Contents,
Index, and Search items, of course, but it also now supports dynamic help, which looks
things up for you automatically. You can see the Dynamic Help window by clicking the
Dynamic Help tab under the Properties window.

 VB .NET looks up all kinds of help topics on the element you've selected automatically;
for example, I've selected a button on a Windows form, and dynamic help has responded
by displaying all kinds of helpful links to information on buttons.

The Server Explorer
 It is used to explore what’s going on in a server
 Using this tool you can drag and drop whole items onto windows forms from server

explorer. Ex. Database.
The Output Window

 At the bottom of the IDE, two tabs are available one is Output and other is Breakpoints
windows.

 From View menu Other Window Select Output Window.
 This window displays results of building and running programs.
 Using system Diagnostic.Debug.Write method user can send output to output window.
 Ex. System.Diagnostics.Debug.Write(“Hello”)

The Task List
 It is display from View Show Tasks All
 The Task List displays tasks that VB .NET assumes you still have to take care of, and

when you click a task, the corresponding location in a code designer appears.
The Command Window

 It is display from View Other Windows Command Window
 It opens the Command window
 This window is a little like the Immediate window in VB6, because you can enter

commands like File.AddNewProject here and VB .NET will display the Add New
Project dialog box. However, this window is not exactly like the Immediate window,
because you can't enter Visual Basic code and have it executed.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 16 of 29

Object Explorer Window

 The object explorer window allows us to view all the members of an object at once. It
lists all the objects in our code and gives us access to them. The image below displays an
object explorer window. You can view the object explorer window by selecting View-
>Other Windows-> Object Browser from the main menu.

Data Types:
 The following are the data type supported by VB.Net .
 Numeric Data Type(Short, Integer, Long, Single, Double, Decimal)
 Character Data Type (Char, String)
 Miscellaneous Data Type(Boolean , Byte, Date, Object)

Following table shows storage size in memory for the data type.
Type Storage Size
String 2 bytes
Char 2 bytes
Integer 4 bytes
Long 8 bytes
Boolean 2 bytes
Byte 1 byte
Short 2 bytes
Single 4 bytes
Double 8 bytes
Decimal 16 bytes
Date 8 bytes
Object 4 bytes

Variables:
 A variable is something that is used in a program to store data in memory.
 A variable has a name and a data type which determine the kind of data the variable can

store.
Variable declaration: Dim statement is used to declare a variable.
Syntax: Dim variablename [([subscript])] [As [New] datatype

Variablename : It is required. It specifies the name of variable which user wants to create.
Subscript : It is optional. Subscript is used to specify the size of array when user declares an
array.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 17 of 29

New: New keyboard enables creation of new object. If you use new when declaring the object
variable, a new instance of the object is created.
Type : The type specify the data type of the variables.
Ex: Dim a as integer, s1 as string

Variable name should follow the following rules:

 Begin with a letter or _.
 Must contain atleast one numeric digit or alphabetic character.
 Maximun 1023 characters are allowed.
 It must be unique in its scope.

 In VB.NET each variable contains default value depends on its data type.
 Default value for Numeric and Byte data type is 0(zero).
 Default value for Char data type is Binary 0(zero).
 Default value for all reference types like object, string, and arrays is Nothing.
 Default value for Boolean data type is False.
 Default value for Date data type is 12:00 AM of 1,1,0001.

Constant Declaration:
Declares and defines one or more constants.

Syntax: Const constantlist

Each constant has the following syntax and parts:

constantname[As datatype] = initializer

constantlist : Required. List of constants being declared in this statement. Constant
[, constant ...]
Constantname: It is required. It specifies the name of the constant.

Datatype: It specifies the type of constant.

Initialize: it is required. The value which is assigned to the constant. Once you initialize the
constant variable with a value it can never change.

Ex: Const pi as double = 3.24

Operators

 Visual Basic comes with many built-in operators that allow us to manipulate data. An
operator performs a function on one or more operands. For example, we add two
variables with the "+" addition operator and store the result in a third variable with the
"=" assignment operator like this: int x + int y = int z. The two variables (x ,y) are called
operands. There are different types of operators in Visual Basic and they are described
below in the order of their precedence.

 Operators may me Unary or Binary
 Unary used with a single operand for example Ans= -10
 Binary used with two operands for example Ans= 10 / 5
 Operators also categorized in following categories:

Arithmetic Operators : Arithmetic operators are used to perform arithmetic operations that
involve calculation of numeric values. The table below summarizes them:

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 18 of 29

Operator Use

^ Exponentiation

- Negation (used to reverse the sign of the given value, exp -intValue)

* Multiplication

/ Division for ex a=11/5 then answer is 5.5

\ Integer Division for ex a=11\5 then answer is 5

Mod Modulus Arithmetic

+ Addition

- Subtraction

Concatenation Operators : Concatenation operators join multiple strings into a single string.
There are two concatenation operators, + and & as summarized below:

Operator Use

+ String Concatenation

& String Concatenation

Comparison Operators : A comparison operator compares operands and returns a logical value
based on whether the comparison is true or not. The table below summarizes them:

Operator Use

= Equality

<> Inequality

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

Logical / Bitwise Operators : The logical operators compare Boolean expressions and return a
Boolean result. In short, logical operators are expressions which return a true or false result over
a conditional expression. The table below summarizes them:

Operator Use

Not Negation

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 19 of 29

And Conjunction

AndAlso Conjunction

Or Disjunction

OrElse Disjunction

Xor Disjunction

Type Conversion functions
 Type conversion is used for convert one data type to another
 There are two type of conversion : Implicit and Explicit.
 An Implicit Conversion does not require any special syntax in the source code.
 An Explicit Conversion requires function.
 For Example : Implicit Conversion

Dim a As Integer
Dim b As Double
a = 4499
b = a

 An explicit conversion requires function.
Function Name Convert Into
CBool Boolean
CByte Byte
CChar Char
CDate Date
CDbl or Val Double
CDec Decimal
CInt Integer
CLng Long
CObj Object
CShort Short
CSng Single
CStr String

 Following is common syntax for each type conversion function:
Syntax : Function_Name(argument)
For Example: Dim str As String

 Dim no As Integer
 str = “5”
 no = Cint(str)
CTYPE function

 It uses to convert one type to another type.
 Instead of remember all conversion functions , we can use CTYPE function
 Execution is faster .

Syntax : Ctype(expression,Type name)
For Example : Dim no1 As Integer
 Dim no2 As Double
 no2 = 66.77
 no1 = Ctype(no2,Integer)

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 20 of 29

Boxing and Unboxing:
 Boxing and unboxing act like bridges between value type and reference types. When we

convert
value type to a reference type it’s termed as boxing. Unboxing is just vice-versa.

 Boxing: The conversion of a value type instance to an object.
 Unboxing : The conversion of an object instance to a value type.
 Example: Dim no As Integer= 10

 Dim obj As Object = no ---- Boxing
 Dim ans As Integer = CInt(obj) ---- Unboxing
Boxing conversions.
A boxing conversion permits any value-type to be implicitly converted to the type object or
to any interface-type implemented by the value-type.
Boxing a value of a value-type consists of allocating an object instance and copying the
value-type value into that instance.
For example any value-type G, the boxing class would be declared as follows:

Class vBox
Private value As G
Sub New(ByVal g As G)
value = g
End Sub 'New
End Class

BoxBoxing of a value v of type G now consists of executing the expression new G_Box(v),
and returning the resulting instance as a value of type object.
Thus, the statements
 Dim i As Integer = 12
 Dim box As Object = i

conceptually correspond to

Dim i As Integer = 12
Dim box = New int_Box(i)

Boxing classes like G_Box and int_Box above don't actually exist and the dynamic type of a
boxed value isn't actually a class type. Instead, a boxed value of type G has the dynamic
type G, and a dynamic type check using these operator can simply reference type G. For
example,
 Dim i As Integer = 12
 Dim box As Object = i
 If TypeOf box Is Integer Then
 Console.Write("Box contains an int")
 End If
will output the string "Box contains an integer" on the console.
Unboxing conversions.
 An unboxing conversion permits an explicit conversion from type object to any
value-type or from any interface-type to any value-type that implements the interface-type.
An unboxing operation consists of first checking that the object instance is a boxed value of
the given value-type, and then copying the value out of the instance.
Unboxing conversion of an object box to a value-type G consists of executing the expression
((G_Box)box).value.
Thus, the statements

 Dim box As Object = 12
 Dim i As Integer = CInt(box)
 conceptually correspond to
 Dim box = New int_Box(12)
 Dim i As Integer = CType(box, int_Box).value.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 21 of 29

For an unboxing conversion to a given value-type to succeed at run-time, the value of the
source argument must be a reference to an object that was previously created by boxing a
value of that value-type. If the source argument is null or a reference to an incompatible
object, an InvalidCastException is thrown.

Array:

 An ordered collection of same type of data having single variable name is known as
array. Each element of the array can be referenced by a numerical subscript.

 In VB.Net two types of arrays are:
a) Standard Array
b) Dynamic Array

Declaration Of Standard Array:
Syntax : Dim varname [(subscripts)] [As type]

WithEvents: This keyword is valid only in class modules. This keyword specifies that varname
is an object variable used to respond to events triggered by an ActiveX object.
VarName : The Varname specify the name of variable which you want to create.
Subscript : Subscript is used when you declare an array.
Type : The type specify the data type of the array variables. User can also include “To” keyword
in array declaration.
Ex : Dim n(5) As Integer.
 Dim s(3) As String.
 Dim n(1 to 4) As Integer.

Dynamic Array:

 In any C or C++ programming language user can not modify the size of the array. Once
we declared the size of array then it becomes fixed.

 In VB .NET we can increase the size of array.
 In some cases we may not know exactly the size of array at declaration time. We may

need to change the size of the array at runtime. So we can resize the array at any time by
using Redim statement.

 But with dynamic array we cannot change the dimension of the array.

Redim Statement: It reallocates storage space for array variables.
Syntax: ReDim [Preserve] name(boundlist) [, name(boundlist) …]
Preserve: It is optional. It is used to preserve the data in an existing array when user changes the
size of the last dimension.

Name: The name of the array variable.
Boundlist: It is required. It is dimensions of an array variable.
Example:

Dim a() As Integer
Private Sub cmdInput_Click()
 ReDim a(5) As Integer
 For i = LBound(a) To UBound(a)
 a(i) = InputBox("Enter elements:")
 Next
End Sub

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 22 of 29

Private Sub cmdPrint_Click()
 ReDim Preserve a(3) As Integer
 'MsgBox LBound(a) & UBound(a)
 For i = LBound(a) To UBound(a)
 msgbox a(i)
 Next
End Sub

 String Functions:
1) Len: This function returns an integer containing the number of characters in a given string.
Syntax : Len(string)
String: Any valid string expression. If string contains Null, Null is returned.
Example:

S1=”hello”
Msgbox len(s1)

2) Mid: It returns a Variant (String) containing a specified number of characters from a string.
Syntax: Mid(string, start[, length])
The Mid function syntax has these named arguments:

Part Description

String Required. String expression from which characters are returned. If string contains
Null, Null is returned.

Start Required; Long. Character position in string at which the part to be taken begins. If
start is greater than the number of characters in string, Mid returns a zero-length
string ("").

Length Optional; Variant (Long). Number of characters to return. If omitted or if there are
fewer than length characters in the text (including the character at start), all
characters from the start position to the end of the string are returned.

Examples:
Dim MyString, FirstWord, LastWord
MyString = "Mid Function Demo" ' Create text string.
FirstWord = Mid(MyString, 1, 3) ' Returns "Mid".
LastWord = Mid(MyString, 14, 4) ' Returns "Demo".
3) Trim , Rtrim, Ltrim: It Returns a string that contains a copy of a specified string without

leading spaces (LTrim), without trailing spaces (RTrim), or without leading or trailing
spaces (Trim).

Syntax: Trim / Rtrim / Ltrim (string)
String: It is requires any valid String expression. If string equals Nothing, the function returns
an empty string.

Example:
S1= “ This is test “
Msgbox Trim(s1)
Msgbox Rtrim(s1)
Msgbox Ltrim(s1)

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 23 of 29

4) Instr: It returns a Variant (Long) specifying the position of the first occurrence of one string
within another.

Syntax: InStr([start,]string1, string2[, compare])

The InStr function syntax has these arguments:

Part Description

Start Optional. Numeric expression that sets the starting position for each search. If
omitted, search begins at the first character position. If start contains Null, an
error occurs. The start argument is required if compare is specified.

string1 Required. String expression being searched.

string2 Required. String expression sought.

Compare Optional. Specifies the type of string comparison. If compare is Null, an error
occurs. If compare is omitted, the Option Compare setting determines the type
of comparison.

Settings: The Compare argument settings are:

Constant Value Description

Binary 0 Performs a binary comparison

Text 1 Performs a text comparison

Return Value

If InStr returns

String1 is zero length or Nothing 0

String2 is zero length or Nothing start

String2 is not found 0

String2 is found within String1 Position where match begins

Examples:
Dim SearchString, SearchChar, MyPos
SearchString ="XXpXXpXXPXXP" ' String to search in.
SearchChar = "P" ' Search for "P".
' A textual comparison starting at position 4. Returns 6.
MyPos = Instr(4, SearchString, SearchChar, 1)

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 24 of 29

' A binary comparison starting at position 1. Returns 9.
MyPos = Instr(1, SearchString, SearchChar, 0)
' Comparison is binary by default (last argument is omitted).
MyPos = Instr(SearchString, SearchChar) ' Returns 9.

5) Lcase: It returns a String that has been converted to lowercase.

Syntax: LCase(string)

The required string argument is any valid string expression. If string contains Null, Null is
returned. Only uppercase letters are converted to lowercase; all lowercase letters and nonletter
characters remain unchanged.
Example:
Dim UpperCase, LowerCase
Uppercase = "Hello World 1234" ' String to convert.
Msgbox Lcase(UpperCase) ' Returns "hello world 1234"

6) Ucase: It returns a Variant (String) containing the specified string, converted to uppercase.

Syntax: UCase(string)

The required string argument is any valid string expression. If string contains Null, Null is
returned.
Only lowercase letters are converted to uppercase; all uppercase letters and nonletter characters
remain unchanged.
Example:
Dim LowerCase, UpperCase
LowerCase = "Hello World 1234" ' String to convert.
Msgbox UCase(LowerCase) ' Returns "HELLO WORLD 1234".

7) Asc: It returns an Integer representing the character code corresponding to the first letter in a
string.

Syntax: Asc(string)

The required string argument is any valid string expression. If String is a String expression, only
the first character of the string is used for input. If String is Nothing or contains no characters, an
error occurs.
Example: msgbox Asc("A")

8) Chr: It returns a String containing the character associated with the specified character code.

Syntax: Chr(charcode)
An Integer expression representing the code point, or character code, for the character. If
CharCode is outside the valid range, an error occur. The valid range for Chr is 0 through 255.
Examples:
Dim MyChar
MyChar = Chr(65) ' Returns A.

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 25 of 29

9) Space: It returns a string consisting of the specified number of spaces.

Syntax: Space(number)

Number : It is required Integer expression. The number of spaces you want in the string.
Example: Msgbox “ Hi” & space(5) & “ How r u?”

10) Format: This function returns a string formatted according to instructions contained in a
format String expression.

Syntax: Format (Expression, style)

Expression : it is any valid expression.
Style: it is applied on specified expression
Example:
D1= #02/14/1989#
Msgbox format(d1,”DD-MM-YY”)

11) Strcomp: It returns -1, 0, or 1, based on the result of a string comparison.
Syntax: Strcomp(string1,string2[,compare])
String1 :Required. Any valid String expression.
String2 :Required. Any valid String expression.
Compare :Optional. Specifies the type of string comparison. If Compare is omitted, the Option
Compare setting determines the type of comparison.

The Compare argument settings are:

Return Value:The StrComp function has the following return values.

If StrComp returns

String1 sorts ahead of String2 -1

String1 is equal to String2 0

String1 sorts after String2 1

Example:
Dim TestStr1 As String = "ABCD"
Dim TestStr2 As String = "abcd"
Dim TestComp As Integer
' The two strings sort equally. Returns 0.
TestComp = StrComp(TestStr1, TestStr2, CompareMethod.Text)
' TestStr1 sorts after TestStr2. Returns -1.
TestComp = StrComp(TestStr1, TestStr2, CompareMethod.Binary)
' TestStr2 sorts before TestStr1. Returns 1.
TestComp = StrComp(TestStr2, TestStr1)

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 26 of 29

12) Left: It returns a Variant (String) containing a specified number of characters from the
left side of a string.

Syntax: Left(str, length)

str :it is required String expression from which the rightmost characters are returned.
Length: It is required Numeric expression indicating how many characters to return. If 0, a zero-
length string ("") is returned. If greater than or equal to the number of characters in str, the entire
string is returned.

Examples:
Dim AnyString, MyStr
AnyString = "Hello World" ' Define string.
MyStr = Microsoft.VisualBasic.Left(AnyString, 1)
Msgbox Mystr ' Returns "H".

13) Right: It returns a string containing a specified number of characters from the right side of
a string.

Syntax: Right(str,length)

str :it is required String expression from which the rightmost characters are returned.
Length: It is required Numeric expression indicating how many characters to return. If 0, a zero-
length string ("") is returned. If greater than or equal to the number of characters in str, the entire
string is returned.

Example:
S1=”this is test”
Msgbox Micosoft.VisualBasic.Right(s1,3)

14) Replace: It returns a string in which a specified substring has been replaced with another
substring a specified number of times.

Syntax: Replace (Expression, Find, Replacement)

Expression :Required. String expression containing substring to replace.
Find :Required. Substring being searched for.
Replacement :Required. Replacement substring.

Example: S1= “Shopping List”

Msgbox Replace(s1, “o”,”I”)

Tostring with its Methods:

1) ToString.Concat: This method is used Concatenates three specified instances of String.

Syntax : System.String.Concat(str1,str2)

str1 : Parameter String

str2 : Parameter String

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 27 of 29

Example:
Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim str1 As String
 Dim str2 As String

 str1 = "Concat() "
 str2 = "Test"
 MsgBox(String.Concat(str1, str2))
 End Sub
End Class

2) String.copy : This method creates a new instance of String with the same value as a
specified String.

Syntac: System.String.Copy(str)

str : The argument String for Copy method
Example:
Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim str1 As String
 Dim str2 As String

 str1 = "VB.NET Copy() test"
 str2 = String.Copy(str1)
 MsgBox(str2)
 End Sub
End Class

3) String.Indexof: It returns the index of the first occurrence of the specified substring.

Syntax: System.String.IndexOf(str)

str - The parameter string to check its occurrences

If the parameter String occurred as a substring in the specified String then it returns position of
the first character of the substring. If it does not occur as a substring, -1 is returned.

Example:

Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim str As String
 str = "VB.NET TOP 10 BOOKS"
 MsgBox(str.IndexOf("BOOKS"))

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 28 of 29

 End Sub
End Class

4) String.substring: It returns a new string that is a substring of this string. The substring
begins at the specified given index and extended up to the given length.

Syntax: Substring(startIndex,length)

startIndex: The index of the start of the substring.

length: The number of characters in the substring.

Example:
Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim str As String
 Dim retString As String
 str = "This is substring test"
 retString = str.Substring(8, 9)
 MsgBox(retString)

 End Sub
End Class

5) String.format: VB.NET String Format method replace the argument Object into a text
equivalent System.Striing.

Syntax: System.Format(format, arg0)

String format : The format String

The format String Syntax is like {indexNumber:formatCharacter}

Object arg0 : The object to be formatted.

Examples:

Currency : String.Format("{0:c}", 10) will return $10.00

The currency symbol ($) displayed depends on the global locale settings.

Date : String.Format("Today's date is {0:D}", DateTime.Now)

You will get Today's date like : 01 January 2005

US05CBCA01 Unit-1: Visual Programming through VB .NET

Page 29 of 29

Time : String.Format("The current time is {0:T}", DateTime.Now)

You will get Current Time Like : 10:10:12

Public Class Form1
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim dNum As Double
 dNum = 32.123456789
 MsgBox("Formated String " & String.Format("{0:n4}", dNum))
 End Sub
End Class
6) String.ToUpper: This method uses the casing rules of the current culture to convert each

character in the current instance to its uppercase equivalent. If a character does not have an
uppercase equivalent, it is included unchanged in the returned string.

The ToUpper method is often used to convert a string to uppercase so that it can be used in a
case-insensitive comparison.

Syntax: string.ToUpper()

Example:
S1= “This is Test”
Msgbox s1.Toupper()

7) String.ToLower: This method does not modify the value of the current instance. Instead, it

returns a new string in which all characters in the current instance are converted to lowercase.

Syntax: string.tolower()

Example:
S1= “This is Test”
Msgbox s1.tolower()

8) String.Remove: Deletes all the characters from this string beginning at a specified position
and continuing through the last position.

Syntax: String.Remove(startIndex)

startIndex : The position to begin deleting characters.

Example:

S1=”abc---def”
Msgbox s1.remove(3)

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 1 of 26

If…Else Statements

It is used to execute one or more statement conditionally. You can use single

line syntax or multi line syntax.

Syntax : 1) If <condition> then <statement>

Syntax : 2) If <condition> then

<statement>

 End if

Syntax : 3) If condition Then

 [statements]

 [ElseIf condition-n Then

 [elseifstatements] …]

 [Else

 [elsestatements]]

End If

 If condition is true, VB .NET executes all the statements following the then

keyword.

 You can use either single line or multiple-line syntax to execute just 1

statement.

 You can use comparison operators in the condition to generate a logical

result that's true or false.

 If condition is True, the statements immediately following the Then keyword

in the body of the If statement will be executed, and the If statement will

terminate before the code in any ElseIf or Else statement is executed.

 If condition is False, the following ElseIf statements are evaluated, if there

are any; this statement lets you test additional conditions, and if any are

True, the corresponding code (elseifstatements above) is executed and the

If statement terminates. If there are no ElseIf statements, or if none of their

conditions are True, the code in the Else statement (elsestatements above),

if there is one, is executed automatically.

Example Dim a, b, c As Integer

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 2 of 26

 a = InputBox(“Enter A: “)

 b = InputBox(“Enter B: “)

 c = InputBox(“Enter C: “)

 If a>b And a>c Then

 MsgBox(“A is Maximum”)

 ElseIf b>a And b>c Then

 MsgBox(“B is Maximum”)

 Else

 MsgBox(“C is Maximum”)

 End If

Select Case statement:

Executes one of several groups of statements depending on the value of an

expression.

Syntax: Select Case testexpression

 [Case expressionlist-n

 [statements-n]]…

 [Case Else

 [elsestatements]]

 End Select

 Testexpression: Required It may be any numeric or string expression.

 Expression list_n: it may be

 expression or

 expression To expression

 Is expression operator expression

 statements-n : one or more statements executed if test expression doesn’t

match any of the case clause.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 3 of 26

 If test expression matches any case expression list expression then statement

following that clause is executed upto the next case clause or for the last

clause or up to End select.

 After performing select……..case, control executes the next statement after

the End select.

 If test expression matches more than 1 expression then only the statements

which follow the 1st match are executed.

 The Case Else clause is used to indicated the else statements to be executed

if no match is found between test expression and expression list.

 Select case statement can be nested. Each nested select case statement

must have a matching End select statement.

Example: Dim no1, no2 as integer

 No2 =20

 No1 = val (Inputbox (“Enter the value of no1:”)

 Select case no1

 Case 1:

 Msgbox(“The value of no1 is:”) & no1

 Case 2:

 Msgbox(“The value of no1 is:”) & no1

 Case 3 To 15:

 Msgbox(“The value of no1 is between 3 to 5”)

 Case Is > no2:

 Msgbox no1 & “is grater than” & no2

 Case else:

 Msgbox (“nothing”);

 End select.

With Statement

The With statement is not a loop, but it can be as useful as a loop. User can use

the With statement to execute statements using a particular object.

Syntax: With object

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 4 of 26

 [statements]

 End With

Example:

With TextBox1

 .Height = 1000

 .Width = 3000

 .Text = "Welcome to Visual Basic"

End With

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 5 of 26

Do Loop:

The Do loop keeps executing its enclosed statements while or until condition is

true. You can also terminate a Do loop at any time with an Exit Do statement.

The Do loop has two versions; you can either evaluate a condition at the

beginning:

Syntax: Do [{While | Until} condition]

 [statements]

 [Exit Do]

 [statements]

 Loop

OR

Syntax: Do

 [statements]

 [Exit Do]

 [statements]

 Loop [{While | Until} condition]

 A loop can be executed either while the condition is true or until the

condition becomes true.

 When VB executes the loops, if first evaluates the condition if condition is

false, the Do…While or Do…Until loop is skipped & execute the statement

followed by the loop.

 The Do…Loop can execute any number of times as long as condition is true.

 If the condition is initially false, the statements may never execute.

 Exit Do statement terminates the loop.

Example:

i=5 i=1

 Do While i>0 Do until i<=5

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 6 of 26

 Msgbox i me.point i

 i=i-1 i=i+1

 loop loop

For Loop

The For loop is probably the most popular of all Visual Basic loops. The Do loop

doesn't need a loop index, but the For loop does; a loop index counts the

number of loop iterations as the loop executes.

Syntax: For index = start To end [Step step]

 [statements]

 [Exit For]

 [statements]

 Next [index]

 The keywords in square brackets are optional.

 The keyword counter, start, end, increment all one of numeric type.

 Index: Required Numeric variable. The variable can’t be a Boolean or an

array element.

 End: Required find value of counter.

 Step: Optional Counter is changed each time through the loop. If not

specified then step defaults to one.

 Statement: Optional one or more statement between for and Next that the

executed the specified number of times.

 Exit For: to terminate the loop without executing the statements after exit for

keyword.

 The loop is executed as many times as required for the counter to reach the

end value.

 The increment argument can be either positive or negative. If start is greater

than end, the value of increment must be negative. If not the loop’s body

can’t be executed.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 7 of 26

Example: for i=0 To 10 for i=10 To 1 step -1

 msgbox i msgbox i

 Next Next.

If I were to use a step size of 2:

 For i = 0 To n Step 2

 MsgBox(i)

 Next

For Each…Next Loop

You use the For Each…Next loop to loop over elements in an array or a Visual

Basic collection. This loop automatically loops over all the elements in the array

or collection.

Syntax: For Each element In group

 [statements]

 [Exit For]

 [statements]

 Next [element]

Example:

 Dim intIDArray(3), intArrayItem As Integer

 intIDArray(0) = 0

 intIDArray(1) = 1

 intIDArray(2) = 2

 intIDArray(3) = 3

 For Each intArrayItem In intIDArray

 System.Console.WriteLine(intArrayItem)

 Next intArrayItem

While Loop

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 8 of 26

While loops keep looping while the condition they test remains true, so you use a

While loop if you have a condition that will become false when you want to stop

looping.

Syntax: While condition

 [statements]

 End While

 If condition is true, all the statements are executed & when the wend

statement is reached, control is returned to the While statement which

evaluate condition again.

 If condition is still true, the process is repeated.

 If condition is false, the program executes the statement following Wend

statement.

Example: i=5

 While i>=0

 total=total+i

 i=i-1

 End while

 Working with Procedure :--

 Dividing your code into procedure allows you to break it up into more

modular units. As your program become longer that’s invaluable as it
stops everything from becoming too cultured

In visual basic , all executable code must be in procedure

There are two typed of procedure
1) sub procedure (sub routine)
2) Functions

Procedure:

 A procedure is a set of one or more program statements that can be run or

call by referring to the procedure name.

 We can divide the big program into small procedures.

 Due to procedure the application is easier to debug and easier to find error.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 9 of 26

 The main advantage of procedure is its reusability.

 Procedures are categorized into two categories:

1) In-built procedure

2) User-defined procedure

 There are 4 types of procedure in VB.Net.

1) Sub procedure: It does not return value.

2) Event handling procedure: These are Sub procedures that execute in

response to an event triggered by user action.

3) Function procedures: they return a value.

4) Property procedures: used in object oriented concept.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 10 of 26

Sub Procedure: Also known as Sub Routine.

 Sub procedure may or may not have arguments. Arguments are not

compulsory.

 A sub procedure does not return the value.

 By Val is by default argument type.

 To declare procedure Sub keyword is used.

Sub Statement: Declares the name, parameters, and code that define a Sub

procedure.

Syntax: [Private | Public] Sub name [(parameterlist)]

 [statements]

 [Exit Sub]

 [statements]

End Sub

 name : It specifies name of the procedure.

 parameterlist : It is optional. It specifies the list of local variable names

representing the parameters of this procedure. Specifies the parameters a

procedure expects when it is called.

 Multiple parameters are separated by commas. The following is the syntax for

one parameter.

[optional] [ByVal | ByRef] varname[()] [As type] [= defaultvalue]

 Optional: Optional. Specifies that this parameter is not required when the

procedure is called.

 ByVal : It is Optional. Specifies that the procedure cannot replace or reassign

the variable element underlying the corresponding argument in the calling

code.

 ByRef : It is Optional. Specifies that the procedure can modify the underlying

variable element in the calling code the same way the calling code itself

can.

 parametername : It is Required. Name of the local variable representing the

parameter.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 11 of 26

 parametertype : Required if Option Strict is On. Data type of the local

variable representing the parameter.

 defaultvalue : Required for Optional parameters. Any constant or constant

expression that evaluates to the data type of the parameter. If the type is

Object, or a class, interface, array, or structure, the default value can only be

Nothing.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 12 of 26

Example:

 Dim ans As Double

 Private Sub sMsg()

 MsgBox("Hello")

 End Sub

 Private Sub sum1(ByRef n1 As Integer)

 MsgBox(n1 + 20)

 End Sub

Private Sub butOk_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles butOk.Click

 Call sMsg()

 Call sum1(Val(Me.txtN1.Text))

End Sub

Working with Modules:-

 Visual Basic uses the term module level to apply equally to

modules,classes and structures you can declare elements at this level by
placing the declaration statement out side of any procedure or block
within the module class or structure .

 When you make a declaration at the module level the accessibility you
choose determines the scope. The namespace that contains the Module ,
class or Structure also affects the scope

 Elements for which you declare private accessibility are available for
reference to every procedure in that module . but , not to any code in a
different module

The Dim statement at Module level defaults to Private accessibility . o , it is
equivalent to using the private statement. However , you can make the scope
and accessibility more obvious by using private.

Class :--
 A class means collection of methods/functions. Method/function accepts

parameters, process set of codes which you have written in the
module/function and returns the output to the caller. Collection of class is
called Class Library. When you complie the Class Library it becomes a DLL.

 A class is simply an abstract model used to define new data types. A class

may contain any combination of encapsulated data (fields or member
variables), operations that can be performed on the data (methods) and

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 13 of 26

accessors to data (properties). For example, there is a class String in the
System namespace of .Net Framework Class Library (FCL). This class contains
an array of characters (data) and provide different operations (methods)
that can be applied to its data like ToLowerCase(), Trim(), Substring(), etc. It
also has some properties like Length (used to find the length of the string).

 A class in VB.Net is declared using the keyword Class and its members are
enclosed with the End Class marker

 NameSpace: If you declared an element at module level using the friend or
public statement it becomes available to all procedures throughout the
entire namespace in which it is declared.
Not that , an element accessible in a namespace is also accessible from
inside any namespace nested inside that namespace .
A namespace is used in .NET Framework to define the scope of a set of
related object. The namespace scope lets you organize code and gives you
a way to create globally unique types. Whether or not you explicitly declare
a namespace in a source file, the compiler adds a default namespace. This
unnamed namespace, sometimes referred to as the global namespace, is
present in every file.

Namespaces organize the objects defined in an assembly. Assemblies can
contain multiple namespaces, which can in turn contain other namespaces.
Namespaces prevent ambiguity and simplify references when using large
groups of objects such as class libraries.

For example, the .NET Framework defines the ListBox class in the
System.Windows.Forms namespace. The following code fragment shows how
to declare a variable using the fully qualified name for this class:

Ex: Dim LBox As System.Windows.Forms.ListBox

Introduction of Windows Forms :--

Windows Forms is the new platform for Microsoft Windows application
development, based on the .NET Framework. This framework provides a clear,
object-oriented, extensible set of classes that enable you to develop rich
Windows applications. Additionally, Windows Forms can act as the local user
interface in a multi-tier distributed solution.

A form is a bit of screen real estate, usually rectangular, that you can use to
present information to the user and to accept input from the user. Forms can be
standard windows, multiple document interface (MDI) windows, dialog boxes, or
display surfaces for graphical routines. The easiest way to define the user
interface for a form is to place controls on its surface. Forms are objects that
expose properties which define their appearance, methods which define their

http://msdn.microsoft.com/en-us/library/system.windows.forms.listbox%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms%28v=vs.100%29.aspx

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 14 of 26

behavior, and events which define their interaction with the user. By setting the
properties of the form and writing code to respond to its events, you customize
the object to meet the requirements of your application.

As with all objects in the .NET Framework, forms are instances of classes. The form
you create with the Windows Forms Designer is a class, and when you display an
instance of the form at run time, this class is the template used to create the
form. The framework also allows you to inherit from existing forms to add
functionality or modify existing behavior. When you add a form to your project,
you can choose whether it inherits from the Form class provided by the
framework, or from a form you have previously created.

Form Life Cycle

 Move: This event occurs when the form is moved. Although by default, when a
form is instantiated and launched, the user does not move it, yet this event is
triggered before the Load event occurs.

 Load: This event occurs before a form is displayed for the first time.
 VisibleChanged: This event occurs when the Visible property value changes.
 Activated: This event occurs when the form is activated in code or by the user.
 Shown: This event occurs whenever the form is first displayed.
 Paint: This event occurs when the control is redrawn.
 Deactivate: This event occurs when the form loses focus and is not the active

form.
 Closing: This event occurs when the form is closing.
 Closed: This event occurs when the form is being closed.

MsgBox Function

Syntax: MsgBox(Prompt [, Buttons As MsgBoxStyle = MsgBoxStyle.OKOnly [, Title])

 Prompt—A string expression displayed as the message in the dialog box. The

maximum length is about 1,024 characters (depending on the width of the

characters used).

 Buttons—The sum of values specifying the number and type of buttons to

display, the icon style to use, the identity of the default button, and the

modality of the message box. If you omit Buttons, the default value is zero.

See below.

 Title—String expression displayed in the title bar of the dialog box. Note that if

you omit Title, the application name is placed in the title bar.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 15 of 26

You can find the possible constants to use for the Buttons argument in Table

MsgBox constants.

Constant Value Description

OKOnly 0 Shows OK button only.

OKCancel 1 Shows OK and Cancel buttons.

AbortRetryIgnore 2 Shows Abort, Retry, and Ignore buttons.

YesNoCancel 3 Shows Yes, No, and Cancel buttons.

YesNo 4 Shows Yes and No buttons.

RetryCancel 5 Shows Retry and Cancel buttons.

Critical 16 Shows Critical Message icon.

Question 32 Shows Warning Query icon.

Exclamation 48 Shows Warning Message icon.

Information 64 Shows Information Message icon.

DefaultButton1 0 First button is default.

DefaultButton2 256 Second button is default.

DefaultButton3 512 Third button is default.

ApplicationModal 0 Application modal, which means the user must

respond to the message box before continuing

work in the current application.

SystemModal 4096 System modal, which means all applications are

unavailable until the user dismisses the message

box.

MsgBoxSetForeground 65536 Specifies the message box window as the

foreground window.

MsgBoxRight 524288 Text will be right-aligned.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 16 of 26

MsgBox constants.

Constant Value Description

MsgBoxRtlReading 1048576 Specifies text should appear as right-to-left on

RTL systems such as Hebrew and Arabic.

Example:
Private Sub Button1_Click

 Dim Result As Integer

 Result = MsgBox("This is a message box!", MsgBoxStyle.OKCancel +

 MsgBoxStyle.Information + MsgBoxStyle.SystemModal, "Message Box")

 End If

End Sub

InputBox Function

User can use the InputBox function to get a string of text from the user.

Syntax : InputBox(Prompt [, Title [, DefaultResponseg[,XPos [, YPos]]]])

 Prompt— A string expression displayed as the message in the dialog box. The

maximum length is about 1,024 characters (depending on the width of the

characters used).

 Title— String expression displayed in the title bar of the dialog box. Note that if

you omit Title, the application name is placed in the title bar.

 DefaultResponse— A string expression displayed in the text box as the default

response if no other input is provided. Note that if you omit DefaultResponse,

the displayed text box is empty.

 XPos— The distance in pixels of the left edge of the dialog box from the left

edge of the screen. Note that if you omit XPos, the dialog box is centered

horizontally.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 17 of 26

 YPos— The distance in pixels of the upper edge of the dialog box from the

top of the screen. Note that if you omit YPos, the dialog box is positioned

vertically about one-third of the way down the screen.

 Input boxes let you display a prompt and read a line of text typed by the

user, and the InputBox function returns the string result.

Example:

Private Sub Button3_Click

 Dim Result As String

 Result = InputBox("Enter your text!")

 TextBox1.Text = Result

End Sub

Function Statement:

Declares the name, parameters, and code that define a Function procedure.

Syntax:

[Public | Private] Function name [(arglist)] [As returntype]

[statements]

[name = expression]

[Exit Function]

[statements]

[name = expression]

End Function

 name : Required. Name of the procedure.

 Parameterlist: Optional. List of local variable names representing the

parameters of this procedure.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 18 of 26

 returntype : Required if Option Strict is On. Data type of the value returned by

this procedure.

 Specifies the parameters a procedure expects when it is called. Multiple

parameters are separated by commas. The following is the syntax for one

parameter.

[Optional] [{ ByVal | ByRef }] parametername[()] [As parametertype]

[= defaultvalue]

 Optional : Optional. Specifies that this parameter is not required when the

procedure is called.

 ByVal : Optional. Specifies that the procedure cannot replace or reassign the

variable element underlying the corresponding argument in the calling

code.

 ByRef : Optional. Specifies that the procedure can modify the underlying

variable element in the calling code the same way the calling code itself

can.

 parametername : Required. Name of the local variable representing the

parameter.

 parametertype : Required if Option Strict is On. Data type of the local

variable representing the parameter.

 defaultvalue : Required for Optional parameters. Any constant or constant

expression that evaluates to the data type of the parameter. If the type is

Object, or a class, interface, array, or structure, the default value can only be

Nothing.

Example:

Private Function res1(ByVal n1 As Double) As Double

 Return (n1 * 3.14)

End Function

Private Sub butOk_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles butOk.Click

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 19 of 26

 ans = res1(Val(Me.txtN1.Text))

 MsgBox("Result is:" & ans)

End Sub

About SDI

 Most applications in Windows 95 or later use a Single Document
Interface. Each window of the application holds a single document, so
if the user wants to open more documents with that application, he
must open a new window. also the default mode when building an
application with VB.Net. An example of an SDI application is Windows
Notepad.

Advantages of SDI

 An SDI interface works very well with multiple monitors and multiple
virtual desktops. It also allows users to switch between multiple open
documents using the native Windows taskbar and task manager,
rather than through special code that must be written into your
application.

About MDI

 Multiple Document Interfaces were more popular in versions of
Windows prior to Windows 95. With an MDI, each window within an
application holds multiple documents, usually in sub-windows. Each
time the user wants to open a new document, rather than opening a
new window, the document opens within the existing window and
shares it with all other open documents. An example of an MDI
application is a tabbed Web browser like Firefox, where users have an
option to open documents in multiple tabs within the same window.

Advantages of MDI

 MDI applications can often handle multiple documents more readily
than SDI programs. For example, many MDI text editors allow the user
to open multiple text files side by side in the same window, making it
easy to compare and look up information from a second document
while working on the first.

Answer the following questions:

1) Differentiate between: Message box – Input box

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 20 of 26

 Message box Input box

1 A message box is non-interactive. 1 An Input box is interactive.

2 It just simply displays an output
message for the user to read

2 it usually will ask the user to type in
some value such as either a
number/or, text.

3 When you click button [OK]...the
message box immediately closes
down/disappears.

MsgBox("Hello, world!")

3 whenever the user clicks on the
button [OK]; the input dialog box
disappears; however, the
number/text value which the user
went and typed in will, normally,
get stored inside of a program
memory box variable name; so
that the program can get to do
something with this value, later on.

num=InputBox ("Enter a number:
","PROGRAM: Find square of
number")

MsgBox("The square of your
number is: " & num*num)

4 The MsgBox displays a dialog box
with a message displayed on a
label and command button to
choose one of the few possible
actions.

4 in an InputBox, it displays a dialog
box with a message displayed on
a label, a textbox to enter data
and command button to accept
or ignore the data entered.

2. Write a difference between Procedure and Function.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 21 of 26

3. Write a difference between MDI and SDI.

4. Define Property, method and event.
Events

 Events are the message sent by an object to the main program

loop, these messages have some information about some specific

occurrence that takes place.

 For example, when we click a button a click event occurs and we

can handle that event with the help of Event handler.

Properties
 They are retrieved and set like variables.

 Property Get and Property Set procedures which provide more

control on how values are set use to implement the properties.

Methods
 Methods represent the object's built-in procedures.

 For example, a class named First have a method named Display.

We can define a method as given blow:

Public Class First
 'creating a class named First
 Sub Display ()
 'creating a method named Display in the class
 End Sub
End Class

We use New keyword to create the Object for this class and is like
Dim obj As New First ().

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 22 of 26

5. List any five properties supported by Windows Form and explain

any one of them.
S.
N

Properties Description

1 AcceptButton The button that's automatically
activated when you press Enter, no
matter which control has the focus
at the time. Usually the OK button
on a form is set as AcceptButton for
a form.

2 CancelButton The button that's automatically
activated when you hit the Esc key.
Usually, the Cancel button on a
form is set as CancelButton for a
form.

3 AutoScale This Boolean property determines
whether the controls you place on
the form are automatically scaled
to the height of the current font. The
default value of this property is True.
This is a property of the form, but it
affects the controls on the form.

4 AutoScroll This Boolean property indicates
whether scroll bars will be
automatically attached to the form
if it is resized to a point that not all its
controls are visible.

5 AutoScrollMinSize This property lets you specify the
minimum size of the form, before the
scroll bars are attached.

6 AutoScrollPosition The AutoScrollPosition is the number
of pixels by which the two scroll bars
were displaced from their initial
locations.

7 BackColor Sets the form background color.

8 BorderStyle The BorderStyle property determines
the style of the form's border and
the appearance of the form −

 None − Borderless window that can't
be resized.

 Sizable − This is default value and
will be used for resizable window
that's used for displaying regular

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 23 of 26

forms.
 Fixed3D − Window with a visible

border, "raised" relative to the main
area. In this case, windows can't be
resized.

 FixedDialog − A fixed window, used
to create dialog boxes.

 FixedSingle − A fixed window with a
single line border.

 FixedToolWindow − A fixed window
with a Close button only. It looks like
the toolbar displayed by the
drawing and imaging applications.

 SizableToolWindow − Same as the
FixedToolWindow but resizable. In
addition, its caption font is smaller
than the usual.

9 ControlBox By default, this property is True and
you can set it to False to hide the
icon and disable the Control menu.

10 Enabled If True, allows the form to respond to
mouse and keyboard events; if
False, disables form.

11 Font This property specifies font type,
style, size

12 HelpButton Determines whether a Help button
should be displayed in the caption
box of the form.

13 Height This is the height of the Form in
pixels.

14 MinimizeBox By default, this property is True and
you can set it to False to hide the
Minimize button on the title bar.

15 MaximizeBox By default, this property is True and
you can set it to False to hide the
Maximize button on the title bar.

16 MinimumSize This specifies the minimum height
and width of the window you can
minimize.

17 MaximumSize This specifies the maximum height
and width of the window you
maximize.

18 Name This is the actual name of the form.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 24 of 26

19 StartPosition This property determines the initial
position of the form when it's first
displayed. It will have any of the
following values −

 CenterParent − The form is centered
in the area of its parent form.

 CenterScreen − The form is centered
on the monitor.

 Manual − The location and size of
the form will determine its starting
position.

 WindowsDefaultBounds − The form is
positioned at the default location
and size determined by Windows.

 WindowsDefaultLocation − The form
is positioned at the Windows default
location and has the dimensions
you've set at design time.

20 Text The text, which will appear at the
title bar of the form.

21 Top, Left These two properties set or return
the coordinates of the form's top-left
corner in pixels.

22 TopMost This property is a True/False value
that lets you specify whether the
form will remain on top of all other
forms in your application. Its default
property is False.

23 Width This is the width of the form in pixel.

6. Explain Show method of Windows Form.
Show method displays the control to the user.
Example: Form1.show()

7. List any five events supported by Windows Form and explain

any one of them.

Sr.No. Event Description
1 Activated Occurs when the form is

activated in code or by the
user.

2 Click Occurs when the form is clicked.
3 Closed Occurs before the form is

closed.

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 25 of 26

4 Closing Occurs when the form is closing.
5 DoubleClick Occurs when the form control is

double-clicked.
6 DragDrop Occurs when a drag-and-drop

operation is completed.
7 Enter Occurs when the form is

entered.
8 GotFocus Occurs when the form control

receives focus.
9 HelpButtonClicked Occurs when the Help button is

clicked.
10 KeyDown Occurs when a key is pressed

while the form has focus.
11 KeyPress Occurs when a key is pressed

while the form has focus.

12 KeyUp Occurs when a key is released
while the form has focus.

13 Load Occurs before a form is
displayed for the first time.

14 LostFocus Occurs when the form loses
focus.

15 MouseDown Occurs when the mouse pointer
is over the form and a mouse
button is pressed.

16 MouseEnter Occurs when the mouse pointer
enters the form.

17 MouseHover Occurs when the mouse pointer
rests on the form.

18 MouseLeave Occurs when the mouse pointer
leaves the form.

19 MouseMove Occurs when the mouse pointer
is moved over the form.

20 MouseUp Occurs when the mouse pointer
is over the form and a mouse
button is released.

21 MouseWheel Occurs when the mouse wheel
moves while the control has
focus.

22 Move Occurs when the form is moved.
23 Resize Occurs when the control is

resized.
24 Scroll Occurs when the user or code

scrolls through the client area.
25 Shown Occurs whenever the form is first

US04CBCA21 Unit-2 Visual Programming

Payal Sheth Page 26 of 26

displayed.
26 VisibleChanged Occurs when the Visible

property value changes.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 1

 What is Control?
 A control is an object that can be drown on to the from making control
are visible object. The control are to enable or and hence user interaction
with the Application. All the control has properties methods and events.

Control class is the base class of all the windows controls. We can work with
controls in two ways at Design time and at Run time.
Some of common properties of the controls are given the below.

1. Back color - Background Color.
2. Background Image -Background Image.
3. Bottom -The distance between the Bottom of the control and the top

of the it’s contains.
4. Context menu – It gets or sets the shortcut menu for the control.
5. Cursor property – It the cursor.
6. Unable property - It gets or sets a value indicting if they control is

enable.
7. Font – To gets or sets the font for the control.
8. Fore color – It gets or sets the font color of the control.
9. Height – It gets or sets the height of control.
10. Left – It gets or sets the X co-ordinate of the control left page in pixels.
11. Location – It gets or sets the co-ordinate of the upper left corner of the

control.
12. Locked – It gets or sets the size or move the control at design time.
13. Name property – It gets or sets name of the control.
14. Right – It retunes the distance between the right edge of the control

and the left edge of its container.
15. Size – It gets or sets size of the control in pixels.
16. Tab index – It gets or sets tab order of this control in its container.
17. Tab Stop – It gets or sets a value specify if the user can Tab or Shift + Tab

to this control with the Tab key.
18. Text – It gets or sets text for this control.
19. Top – It gets or sets the top co-ordinate of the control.
20. Visible – It gets or sets a value for visibility of the control.
21. Width – Its gets or sets width of the control.

Some common event of the control are as given below :

1. Click – It occurs then the control it click
2. Got Focus – It occurs when the control received focus.
3. Key down – It occurs when the key is pressed the control has focus.
4. Key pressed – It occurs when a key is pressed one control has focus.
5. Key up – It occurs when a key is released by the control has focus.
6. Lost focus – It occurs when the control user losses focus.
7. Mouse click – It occurs when the control is click by the mouse.
8. Mouse down – It occurs when the mouse pointer is over the control and

the mouse button is pressed.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 2

9. Mouse enter – It occurs when the mouse pointer enter the controls the
mouse over it occurs when the mouse pointer rests on the controls.

10. Mouse leave – It occurs when the mouse pointer lives the control.
11. Mouse move - It occurs when the mouse pointer is moved over the

control.
12. Mouse up- It occurs when the mouse pointer is over the control and a

mouse button is released.
13. Mouse while - It occurs when the mouse while moves when the control

has focus.

Button

One of the most popular controls in Visual Basic is the Button Control
(previously Command Control). They are the controls which we click and
release to perform some action. Buttons are used mostly for handling events
in code, say, for sending data entered in the form to the database and so
on. The default event of the Button is the Click event and the Button class is
based on the ButtonBase class which is based on the Control class.

Properties:

Properties Description

Visible Property used to make the control

visible or invisible

Enabled This property is used to enable the

control.

Width This property is used to specify the

width of the control.

Font Property used to set the font

properties like bold, Italic, Name and

so on.

Height Property used to specify the height.

Width Property is used to set the width of the

control.

Left Property is set the X coordinate of the

control.

BackColor Property is used set the background

color of the control.

Image Property is used to set a background

picture for the control.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 3

DialogResult Property is used to set or get the value

returned to the parent from when the

button is clicked.

Image Property is used to set a background

picture for the control.

ImageAlign Property is used to get or set

alignment of the image.

ImageList Property is used to set or get the

Image List that contains the images

displayed.

Methods:

Method Description

PerformClick Method used to generate a click

event for the radio button.

Events:

Events Description

Enter Triggered when Command Button

Control gets focus.

Click Triggered when the control is clicked.

Leave Triggered when control loses focus.

Label

Label Control is usually used to display text that cannot be edited by the user.
But using the properties or code that is displayed can be changed.
Labels are those controls that are used to display text in other parts of the
application. They are based on the Control class.
Notable property of the label control is the text property which is used to set
the text for the label.

Properties:

Properties Description

AutoSize This property is used to set or get a

value specifying if the control should

be automatically resized.

BorderStyle This property is used to get or set the

border style for the control.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 4

FlatStyle This property is used to get or set the

flat style appearance of label control.

Image Property is used to set or get the

image that is displayed on a label.

ImageAlign Property is used to set or get the

alignment of an image that is

displayed in the control.

PreferredHeight Property is used to get the preferred

height of the control.

PreferredWidth Property is used get the preferred

width of the control.

TextAlign Property is used set or get the

alignment of text in the control.

UseMnemonic Property is used set or get a value

specifying whether to consider

ampersand as an access key

character.

TextBox

 This controls looks like a box and accepts input from the user.
 Typically a textbox control is used to display or accept as input a single

line of text.
 Text can display multi line you can do that by setting the textbox multi

line property is true.
 Using the scrollbar property’s there are four ways to add scrollbar to a

textbox value of scrollbar is 0 as nun, 1 as Horizontal 2 as vertical, 3 as
both.

 You can use text line properties you can set it to lest justified, right
justified and centered.

 You can use text line properties to make a textbox read only setting this
properties to true means that the user cannot enter text into the
textbox.

 You can disable a textbox by setting its enabled property to false.
By default a textbox holds up to 32767 char. But when displaying multi line a
textbox holds up to 2GB of text.
To convert a slandered textbox into a password box you just assign some
char to the textboxes password char. Property.
The text property contains in the control to set or get text.

Properties:

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 5

Properties Description

TextAlign Text alignment is set using this property

Multiline This property is used to set more than

one-line text

ScrollBars This property is used to specify vertical

and horizontal scroll bars.

MaxLength Property used to specify the maximum

number of characters accepted by a

TextBox Control.

Enabled Property used to enable a textbox

control.

Index Property used to specify the index of a

control array.

Readonly Property is set to true to use the control,

false the control cannot be used.

SelectionLength Property is used set or get the number of

characters selected in the text box.

SelectionStart Property is used set or get the starting

point of a text box.

SelectedText Property is used for indicating the

currently selected text box.

Methods:

Method Description

Drag Method used for the drag drop

functionality.

SetBounds Methods used to set the bound for the

control at the specifed location and

size.

Focus Method to set focus to a TextBox

Control

Clear Method used to clear all text from the

text box.

SelectAll Methods used to select all the text in the

control.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 6

Select Method to selects the text in the text

box.

Copy Method used to copy selected text.

Cut Methods used to cut the selected text.

Paste Method to paste the text in the control

to the clipboard.

Events:

Events Description

AutoSizeChanged Triggered when the AutoSize property is

changed.

ReadOnlyChanged Triggered when ReadOnly property

value changes.

Click Triggered when the control is clicked .

Radio Button
Properties:

Properties Description

Text Property used to display the text

center aligned on the control.

Size This property is used to specify the

width, height of the control.

Font Property used to set the font

properties like bold, Italic, Name and

so on.

Appearance Property is used to set or get the value

that determines the appearance.

Autocheck Property is used to set or get whether

the checked value, appearance

change when clicked on the radio

button.

Checked Property is used to set or get the value

indicating whether the radio button is

checked.

FlatStyle Property is used to set or get flatStyle

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 7

appearance of the radio button.

Image Property is used to set or get the

image displayed on the radio button.

ImageAlign Property is used to set or get the

alignment of the image on the

control.

ImageList Property is used to set or get the

images displayed on the control.

Methods:

Method Description

PerformClick Method used to generate a click

event for the radio button.

Events:

Events Description

CheckedChanged Triggered when the control is checked

or changed.

AppearanceChanged Triggered when the appearance

property changes.

Combobox
Properties:

Sr.No. Property & Description

1 AllowSelection

Gets a value indicating whether the list enables selection of list items.

2 AutoCompleteCustomSource

Gets or sets a custom System.Collections .Specialized.StringCollection
to use when the AutoCompleteSourceproperty is set to CustomSource.

3 AutoCompleteMode

Gets or sets an option that controls how automatic completion works
for the ComboBox.

4 AutoCompleteSource

Gets or sets a value specifying the source of complete strings used for

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 8

automatic completion.

5 DataBindings

Gets the data bindings for the control.

6 DataManager

Gets the CurrencyManager associated with this control.

7 DataSource

Gets or sets the data source for this ComboBox.

8 DropDownHeight

Gets or sets the height in pixels of the drop-down portion of the
ComboBox.

9 DropDownStyle

Gets or sets a value specifying the style of the combo box.

10 DropDownWidth

Gets or sets the width of the of the drop-down portion of a combo
box.

11 DroppedDown

Gets or sets a value indicating whether the combo box is displaying its
drop-down portion.

12 FlatStyle

Gets or sets the appearance of the ComboBox.

13 ItemHeight

Gets or sets the height of an item in the combo box.

14 Items

Gets an object representing the collection of the items contained in
this ComboBox.

15 MaxDropDownItems

Gets or sets the maximum number of items to be displayed in the
drop-down part of the combo box.

16 MaxLength

Gets or sets the maximum number of characters a user can enter in

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 9

the editable area of the combo box.

17 SelectedIndex

Gets or sets the index specifying the currently selected item.

18 SelectedItem

Gets or sets currently selected item in the ComboBox.

19 SelectedText

Gets or sets the text that is selected in the editable portion of a
ComboBox.

20 SelectedValue

Gets or sets the value of the member property specified by the
ValueMember property.

21 SelectionLength

Gets or sets the number of characters selected in the editable portion
of the combo box.

22 SelectionStart

Gets or sets the starting index of text selected in the combo box.

23 Sorted

Gets or sets a value indicating whether the items in the combo box
are sorted.

24 Text

Gets or sets the text associated with this control.

Methods:
Sr.No. Method Name & Description

1 BeginUpdate

Prevents the control from drawing until the EndUpdate method is
called, while items are added to the combo box one at a time.

2 EndUpdate

Resumes drawing of a combo box, after it was turned off by the
BeginUpdate method.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 10

3 FindString

Finds the first item in the combo box that starts with the string specified
as an argument.

4 FindStringExact

Finds the first item in the combo box that exactly matches the
specified string.

5 SelectAll

Selects all the text in the editable area of the combo box.

Events:

Sr.No. Event & Description

1 DropDown

Occurs when the drop-down portion of a combo box is displayed.

2 DropDownClosed

Occurs when the drop-down portion of a combo box is no longer
visible.

3 DropDownStyleChanged

Occurs when the DropDownStyle property of the ComboBox has
changed.

4 SelectedIndexChanged

Occurs when the SelectedIndex property of a ComboBox control has
changed.

5 SelectionChangeCommitted

Occurs when the selected item has changed and the change
appears in the combo box.

Checkbox

Sr.No. Property & Description

1 Appearance

Gets or sets a value determining the appearance of the

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 11

check box.

2 AutoCheck

Gets or sets a value indicating whether the Checked or
CheckedState value and the appearance of the control
automatically change when the check box is selected.

3 CheckAlign

Gets or sets the horizontal and vertical alignment of the check
mark on the check box.

4 Checked

Gets or sets a value indicating whether the check box is
selected.

5 CheckState

Gets or sets the state of a check box.

6 Text

Gets or sets the caption of a check box.

7 ThreeState

Gets or sets a value indicating whether or not a check box
should allow three check states rather than two.

Methods:
Sr.No. Method Name & Description

1 OnCheckedChanged

Raises the CheckedChanged event.

2 OnCheckStateChanged

Raises the CheckStateChanged event.

3 OnClick

Raises the OnClick event.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 12

Events:
Sr.No. Event & Description

1 AppearanceChanged

Occurs when the value of the Appearance property of the
check box is changed.

2 CheckedChanged

Occurs when the value of the Checked property of the
CheckBox control is changed.

3 CheckStateChanged

Occurs when the value of the CheckState property of the
CheckBox control is changed.

Listbox

Properties

Sr.No. Property & Description

1 AllowSelection

Gets a value indicating whether the ListBox currently enables
selection of list items.

2 BorderStyle

Gets or sets the type of border drawn around the list box.

3 ColumnWidth

Gets of sets the width of columns in a multicolumn list box.

4 HorizontalExtent

Gets or sets the horizontal scrolling area of a list box.

5 HorizontalScrollBar

Gets or sets the value indicating whether a horizontal scrollbar is
displayed in the list box.

6 ItemHeight

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 13

Gets or sets the height of an item in the list box.

7 Items

Gets the items of the list box.

8 MultiColumn

Gets or sets a value indicating whether the list box supports
multiple columns.

9 ScrollAlwaysVisible

Gets or sets a value indicating whether the vertical scroll bar is
shown at all times.

10 SelectedIndex

Gets or sets the zero-based index of the currently selected item in
a list box.

11 SelectedIndices

Gets a collection that contains the zero-based indexes of all
currently selected items in the list box.

12 SelectedItem

Gets or sets the currently selected item in the list box.

13 SelectedItems

Gets a collection containing the currently selected items in the list
box.

14 SelectedValue

Gets or sets the value of the member property specified by the
ValueMember property.

15 SelectionMode

Gets or sets the method in which items are selected in the list box.
This property has values −

 None

 One

 MultiSimple

 MultiExtended

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 14

16 Sorted

Gets or sets a value indicating whether the items in the list box are
sorted alphabetically.

17 Text

Gets or searches for the text of the currently selected item in the
list box.

18 TopIndex

Gets or sets the index of the first visible item of a list box.

Methods

Sr.No. Method Name & Description

1 BeginUpdate

Prevents the control from drawing until the EndUpdate method
is called, while items are added to the ListBox one at a time.

2 ClearSelected

Unselects all items in the ListBox.

3 EndUpdate

Resumes drawing of a list box after it was turned off by the
BeginUpdate method.

4 FindString

Finds the first item in the ListBox that starts with the string
specified as an argument.

5 FindStringExact

Finds the first item in the ListBox that exactly matches the
specified string.

6 GetSelected

Returns a value indicating whether the specified item is
selected.

7 SetSelected

Selects or clears the selection for the specified item in a ListBox.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 15

8 OnSelectedIndexChanged

Raises the SelectedIndexChanged event.

8 OnSelectedValueChanged

Raises the SelectedValueChanged event.

Events

Sr.No. Event & Description

1 Click

Occurs when a list box is selected.

2 SelectedIndexChanged

Occurs when the SelectedIndex property of a list box is
changed.

Timer

Properties:

Property Name Description
Name It is used to specify name of the Timer Control.
Enabled It is used to determine whether Timer Control will be

enabled or not. It has Boolean value true or false.
Default value is false.

Interval It is used to specify interval in millisecond. Tick event of
Timer Control generates after the time which is specified
in Interval Property.

Methods:

Method Name Description

Start This method is used to start the Timer Control.

Stop This method is used to stop the Timer Control.

Events:

Event Name Description

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 16

Tick Tick event of the Timer Control fires continuously
after the time which is specified in the Inteval
property of Timer Control.

PictureBox

Properties:

Properties Description

BackColor Property gets or sets the bsckground

color for the control.

SizeMode Property used to Get or sets size options

for the control.

BorderStyle Property used to specify the border

style for the control.

Font Property to use to set or get the font

style for the control.

Image Property used to specify the image to

be loaded either from a resource file or

from a local location.

Visible Property to use to specify whether to

make the control visible.

WaitOnLoad Property to use to wait till a big image

gets loaded.

Enabled Property to use to enable or disable the

control.

Events:

Events Description

Resize Triggered when the picture box is

resized.

SizeModeChanged Triggered when the SizeMode

changes.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 17

HScrollbar and VScrollbar

Properties
Sr.No. Property & Description

1 AutoSize

Gets or sets a value indicating whether the ScrollBar is automatically
resized to fit its contents.

2 BackColor

Gets or sets the background color for the control.

3 ForeColor

Gets or sets the foreground color of the scroll bar control.

4 ImeMode

Gets or sets the Input Method Editor (IME) mode supported by this
control.

5 LargeChange

Gets or sets a value to be added to or subtracted from the Value
property when the scroll box is moved a large distance.

6 Maximum

Gets or sets the upper limit of values of the scrollable range.

7 Minimum

Gets or sets the lower limit of values of the scrollable range.

8 SmallChange

Gets or sets the value to be added to or subtracted from the Value
property when the scroll box is moved a small distance.

9 Value

Gets or sets a numeric value that represents the current position of the
scroll box on the scroll bar control.

Methods
Sr.No. Method Name & Description

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 18

1 OnClick

Generates the Click event.

2 Select

Activates the control.

Events
Sr.No. Event & Description

1 Click

Occurs when the control is clicked.

2 DoubleClick

Occurs when the user double-clicks the control.

3 Scroll

Occurs when the control is moved.

4 ValueChanged

Occurs when the Value property changes, either by handling the
Scroll event or programmatically.

CheckedListBox

Property Purpose

CheckOnClick It is used to specify weather CheckBox should be

toggled (change state) or not when an item is selected

in the CheckedListBox. It has Boolean value. Default

value is False.

MultiColumn It is used to specify whether CheckedListBox supports

multiple columns or not. It has Boolean value. Default

value is false.

ColumnWidth It is used to specify width of each column in

MultiColumn CheckedListBox.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 19

Items It represents collection of items contained in

CheckedListBox control.

Sorted It is used to specify weather items of CheckedListBox are

sorted in alphabetical order or not. It has Boolean value.

Default value is false.

SelectionMode It is used to get or set SelectionMode of CheckedListBox.

It determines how user can select the Items of

CheckedListBox. It can have one of the following four

options:

(1)None: No Selection is allowed

(2)One: User can select only one item at a time.

(3)MultiSimple: User can select or deselect item just by

mouse click or pressing spacebar.

(4) MultiExtended: User can select or deselect items by

holding Ctrl key and mouse click. User can also select or

deselect items by pressing Shift key and mouse click or

arrow key.

Default value is One.

ScrollAlwaysVisible It is used to specify weather Scroll Bars is always

associated with CheckedListBox or Not regardless of

number of items present in CheckedListBox. It has

Boolean value. Default value is false.

HorizontalExtent It is used to get or set width in pixel, by which a

CheckedListBox can scrolled horizontally. It works only

when Horizontal Scrollbar Property is set to true.

HorizontalScrollbar It is used to specify whether CheckedListBox can have

Horizontal Scroll Bar or Not, If Number of Items in

CheckedListBox are not accommodate in specified

width. It has Boolean value. Default value is False.

ThreeDCheckBoxes It is used to get or set value which determines CheckBox

has Flat or Normal Button State. It has Boolean value.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 20

Default value is false. When it is true check box has flat

button state.

SelectedIndex It is used to get or set zero based index of the item

currently selected in CheckedListBox.

SelectedItem It is used to get or set item currently selected in

CheckedListBox.

SelectedItems It is used to get collection of multiple items currently

selected in CheckedListBox.

CheckedItems It is used to get collection of multiple items currently

checked in CheckedListBox.

SelectedIndices It is used to get collection of zero-based indexes of all

items currently selected in CheckedListBox.

CheckedIndices It is used to get collection of zero-based indexes of all

items currently checked in CheckedListBox.

Enable It is used to specify whether CheckedListBox Control is

enabled or not at runtime. It has Boolean value. Default

value is true.

Visible It is used to specify whether CheckedListBox Control is

visible or not at runtime. It has Boolean value. Default

value is true.

TabStop It is used to specify weather user can use TAB key to set

focus on CheckedListBox Control or not. It has Boolean

value. Default value is true.

Methods
Method Purpose

ClearSelected It is used to unselect all the items that are currently

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 21

selected in ListBox.

FindString It is used to find first occurrences of an item in the

ListBox that partially match with string specified as an

argument. If an item is found than it returns zero based

index of that item, otherwise it returns -1. The search

performed by this method is case insensitive.

FindStringExact It is used to find first occurrences of an item in the

ListBox that exactly match with string specified as an

argument. If an item is found than it returns zero based

index of that item, otherwise it returns -1. The search

performed by this method is case insensitive.

GetSelected It is used to determine whether an item whose index is

passed as an argument is selected or not. It returns

Boolean value.

SetSelected It is used to select or deselect an item whose index is

passed as an argument.

Example:

ListBox1.SetSelected (1, true) will select second item of

ListBox.

ClearSelected It is used to unselect all items in CheckedListBox.

GetItemChecked It is used to check weather an item whose index is

passed as an argument is checked or not. It returns

Boolean value.

GetItemCheckState It is used to get check state of an item whose index is

passed as an argument. It returns 1 if item is checked

otherwise false.

SetItemCheckState It is used to set the check state of an item whose index

is passed as an argument.

Example:

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 22

CheckedListBox1.SetItemChecked (1,

CheckState.Checked

) will check the second item of CheckedListBox.

Events
Event Purpose

SelectedIndexChanged It is the default event of ListBox Control. It fires each

time a selected Item in the ListBox is changed.

ItemCheck It fires each time an item is checked or unchecked.

GroupBox

Properties

Property Purpose

BackColor It is used to get or set background color of the

GroupBox.

BackgroundImage It is used to get or set background Image of the

GroupBox.

BackgroundImageLayout It is used to get or set background Image layout

of the GroupBox. It has one of the following

values:

None, Tile, Centre, Stretch, Zoom

Font It is used to get or set font Style, Font Size, Font

Face of the text contained in GroupBox Control.

ForeColor It is used to get or set color of the text contained

in GroupBox Control.

Enabled It is used to specify whether GroupBox Control is

enabled or not. It has Boolean value. Default

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 23

value is true.

Visible It is used to specify whether GroupBox Control is

visible or not at run time. It has Boolean value.

Default value is true.

Text It is used to get or set Title or Header Text of the

GroupBox Control.

Methods
Method Purpose

Show It is used to show GroupBox Control.

Hide It is used to Hide GroupBox Control at run time.

Focus It is used to set cursor or focus on GroupBox Control.

DateTimePicker

Properties:

Properties Description

CalendarFont Property to set the font for calendar.

CalendarForeColor Property to set or get the foreground

color for the calendar.

CalendarMonthBackGround Property to set or get the background

color for the calendar month.

CalendarTitleBacKColor Property to get or set background

color for the calendar title.

CalendarTitleForeColor Property to get or set foreground color

for the calendar title.

BackColor Property to set the background color

for the control.

BindingContext Property used to set or get the binding

context for the control.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 24

Checked Property used to get or set a value

indicating whether the Value property

has been set a valid date/time value

that can be updated.

Format Property used to set or get the format

of the date and time displayed.

MaxDate Property used to set or get the

maximum date that can be selected

using the control.

MinDate Property used to set or get the

minimum date that can be selected

using the control.

ShowCheckBox Property used to set or get a value to

decide whether to display a check

box to the left of the selected date.

Value Property used to set or get the date,

time value assigned to the control.

Width Property set width of the control.

RightToLeft Property specifies a value to know

whether the text appears from right to

left.

Locked Prevents the control being moved at

design time.

Methods:

Method Description

DoDragDrop Method used to begin Drag Drop

Operation.

Equals Method used to check if two instances

of an object are equal.

FindForm Method used to retreive the form the

control is on.

Focus Method used to set the input focus on

the control.

Hide Method used to hide the control.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 25

PointToScreen Method used to calculate the location

of the specified client point into screen

coordinates.

ToString Method used to convert this object

into its equivalent String value.

Select Method used to select the control.

Events:

Events Description

DragDown Triggered when the dropdown

claendar appears.

CloseUp Triggered when the dropdown

calendar disappears.

FormatChanged Triggered when the format property is

changed.

ValueChanged Triggered when the value property is

chnaged.

LinkLabel

Properties
Property Purpose

LinkColor It is used to get or set Fore color of the Hyperlink in its

default state.

ActiveLinkColor It is used to get or set Fore color of the Hyperlink when

user clicks it.

DisabledLinkColor It is used to get or set Fore color of the Hyperlink when

LinkLabel is disabled.

VisitedLinkColor It is used to get or set Fore color of the Hyperlink when

LinkVisited property of LinkLabel is set to true.

LinkVisited It is used to specify weather Hyperlink is already visited or

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 26

not. It has Boolean value. Default value is false.

Text It is used to get or set text associated with LinkLabel

Control.

TextAlign It is used to get or set alignment of the text associated

with LinkLabel Control.

ForeColor It is used to get or set Fore Color of the text associated

with LinkLabel Control.

BackColor It is used to get or set Background color of the LinkLabel

Control.

Enabled It is used to specify weather LinkLabel control is enabled

or not at runtime. It has Boolean value true or false.

Default value is true.

Visible It is used to specify weather LinkLabel control is visible or

not at runtime. It has Boolean value true or false. Default

value is true.

Methods:
Method Purpose

Show It is used to Show LinkLabel Control at runtime.

Hide It is used to Hide LinkLabel Control at runtime.

Focus It is used to set input focus on LinkLabel Control.

Events:
Event Purpose

Link Clicked It is the default event of LinkLabel Control. It fires each time a

user clicks on a hyperlink of LinkLabel Control.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 27

TreeView

Properties:
Sr.No. Property & Description

1 BackColor

Gets or sets the background color for the control.

2 BackgroundImage

Gets or set the background image for the TreeView control.

3 BackgroundImageLayout

Gets or sets the layout of the background image for the
TreeView control.

4 BorderStyle

Gets or sets the border style of the tree view control.

5 CheckBoxes

Gets or sets a value indicating whether check boxes are
displayed next to the tree nodes in the tree view control.

6 DataBindings

Gets the data bindings for the control.

7 Font

Gets or sets the font of the text displayed by the control.

8 FontHeight

Gets or sets the height of the font of the control.

9 ForeColor

The current foreground color for this control, which is the color
the control uses to draw its text.

10 ItemHeight

Gets or sets the height of each tree node in the tree view
control.

11 Nodes

Gets the collection of tree nodes that are assigned to the tree

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 28

view control.

12 PathSeparator

Gets or sets the delimiter string that the tree node path uses.

13 RightToLeftLayout

Gets or sets a value that indicates whether the TreeView should
be laid out from right-to-left.

14 Scrollable

Gets or sets a value indicating whether the tree view control
displays scroll bars when they are needed.

15 SelectedImageIndex

Gets or sets the image list index value of the image that is
displayed when a tree node is selected.

16 SelectedImageKey

Gets or sets the key of the default image shown when a
TreeNode is in a selected state.

17 SelectedNode

Gets or sets the tree node that is currently selected in the tree
view control.

18 ShowLines

Gets or sets a value indicating whether lines are drawn
between tree nodes in the tree view control.

19 ShowNodeToolTips

Gets or sets a value indicating ToolTips are shown when the
mouse pointer hovers over a TreeNode.

20 ShowPlusMinus

Gets or sets a value indicating whether plus-sign (+) and minus-
sign (-) buttons are displayed next to tree nodes that contain
child tree nodes.

21 ShowRootLines

Gets or sets a value indicating whether lines are drawn
between the tree nodes that are at the root of the tree view.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 29

22 Sorted

Gets or sets a value indicating whether the tree nodes in the
tree view are sorted.

23 StateImageList

Gets or sets the image list that is used to indicate the state of
the TreeView and its nodes.

24 Text

Gets or sets the text of the TreeView.

25 TopNode

Gets or sets the first fully-visible tree node in the tree view
control.

26 TreeViewNodeSorter

Gets or sets the implementation of IComparer to perform a
custom sort of the TreeView nodes.

27 VisibleCount

Gets the number of tree nodes that can be fully visible in the
tree view control.

Methods

Sr.No. Method Name & Description

1 CollapseAll

Collapses all the nodes including all child nodes in the tree view
control.

2 ExpandAll

Expands all the nodes.

3 GetNodeAt

Gets the node at the specified location.

4 GetNodeCount

Gets the number of tree nodes.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 30

5 Sort

Sorts all the items in the tree view control.

6 ToString

Returns a string containing the name of the control.

Events:

Sr.No. Event & Description

1 AfterCheck

Occurs after the tree node check box is checked.

2 AfterCollapse

Occurs after the tree node is collapsed.

3 AfterExpand

Occurs after the tree node is expanded.

4 AfterSelect

Occurs after the tree node is selected.

5 BeforeCheck

Occurs before the tree node check box is checked.

6 BeforeCollapse

Occurs before the tree node is collapsed.

7 BeforeExpand

Occurs before the tree node is expanded.

8 BeforeLabelEdit

Occurs before the tree node label text is edited.

9 BeforeSelect

Occurs before the tree node is selected.

10 ItemDrag

Occurs when the user begins dragging a node.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 31

11 NodeMouseClick

Occurs when the user clicks a TreeNode with the mouse.

12 NodeMouseDoubleClick

Occurs when the user double-clicks a TreeNode with the
mouse.

13 NodeMouseHover

Occurs when the mouse hovers over a TreeNode.

14 PaddingChanged

Occurs when the value of the Padding property changes.

15 Paint

Occurs when the TreeView is drawn.

16 RightToLeftLayoutChanged

Occurs when the value of the RightToLeftLayout property
changes.

17 TextChanged

Occurs when the Text property changes.

RichTextBox

Properties:

Properties Description

AutoSize Property gets or sets the value

specifying to change the rich text

box automatically as the font

changes.

BackColor Property used to Get or set

background color for the control.

AutoWordSelection Property used to set or get a value

specifying automatic word selection.

CanRedo Property to use to indicate that any

actions can be reapplied.

CanUndo Property to use to undo any previous

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 32

actions.

HideSelection Property used to set or get value

specify a text should stay highlighted

when control loses focus.

MaxLength Property used to set or get the

maximum number of a line a user

can type into a rich text box.

Multiline Property used to set or get a value

specifying multiline input for the

control.

ScrollBars Property used to set or get the kind of

scroll bar to be used.

SelectedText Property used to set or get the

selected text within the control.

SelectionColor Property used to set or get color for

the selected text.

SelectionLength Property used to set or get the

number of characters selected in the

control.

SelectionFont Property used to set or get the font

for the selected text.

TextLength Property used to set or get the length

of text in the control.

Text Property used to set or get the

current text in the control.

Methods:

Method Description

Appends Method used to append text to

current text of the control.

CanPaste Method determines if the infromation

can be pasted from a clipboard.

Clear Method used to clear text from the

control.

Find Method used to search a text inside

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 33

the control.

GetLineFromCharIndex Method used to get the line number

from the specified character position.

GetPositionFromCharIndex Method used to get the location

within the control at the specified

character index.

LoadFile Methods used to load the contents of

a file into the control.

Redo Method to reapply the last operation.

Select Methods used to select the text within

the control.

Undo Method to undo the last edit

operation.

Events:

Events Description

Click Triggered when the control is clicked.

LinkClicked Triggered when the user clicks on the

link within the text.

ModifiedChanged Triggered when the value of the

Modified property is changed.

ReadOnlyChanged Triggered when the value of the

ReadOnly property is changed.

SelectionChanged Triggered when the value of the

Selection property is changed.

VScroll Triggered when the vertical scroll bars

are clicked.

ColorDialogBox

Properties Description

AllowFullOpen Property gets or sets whether the user
can use the dialog box to define
custom colors.

AnyColor Property gets or sets whether a dialog
box displays all available colors in the

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 34

set of basic colors.

Color Property gets or sets the color
selected by the user.

FullOpen Property used to get or set whether
the controls used to create custom
colors are visible.

ShowColorOnly Property used to set or get whether
the dialog box will restrict users to
select solid colors only.

ShowHelp Property used to set or get whether
the dialog box displays Help button.

Methods:

Method Description

Reset Method used to reset all dialog
options to default values.

ShowDialog Method shows the dialog box.

Events:

Events Description
HelpRequest Triggered when the user clicks the

Help Button.

FontDialogbox

Properties:

Properties Description

AllowSimulations Property gets or sets if the dialog box
allows graphics device interface font
simulations.

AllowVectorFonts Property gets or sets whether a dialog
box allows vector font selections.

AllowVerticalFonts Property gets or sets whether a dialog
box displays both vertical and
horizontal font or any one.

Color Property used to get or set the
selected font color.

FixedPitchOnly Property used to get or set whether
the dialog box allows only the
selection of fixed pitch fonts.

Font Property used to get or set the
selected font.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 35

FontMustExists Property to use to get or set whether
the dialog box specifies an error
condition if the user attempts to select
a font or style that doesn’t exists.

MaxSize Property to use to set or get the
maximum point size a user can select.

MinSize Property used to set or get the
minimum point size a user can select.

ShowApply Property used to set or get whether
dialog box contans an Apply button.

ShowColor Property used to set or get whether
the dialog box display the color
choice.

ShowEffects Property used to set or get whether
the dialog box contains controls that
allow user to specify strikethrough
underline, and text color options.

ShowHelp Property used to set or get whether
the dialog box displays Help button.

Methods:

Method Description

Reset Method used to reset all dialog
options to default values.

ShowDialog Method shows the dialog box.

Events:

Events Description

Apply Triggers when the user clicks the
Apply button.

HelpRequest Triggered when the user clicks the
Help Button.

Menu Control

A menu is located on the menu bar and contains a list of related commands.
MainMenu is the container for the Menu structure of the form and menus are
made of MenuItem objects that represent individual parts of a menu.

You can create a main menu object on your form using the MainMenu
control. The following picture shows how to drag the Menustrip Object to the
Form.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 36

After drag the Menustrip on your form you can directly create the menu
items by type a value into the "Type Here" box on the menubar part of your
form. From the following picture you can understand how to create each
menu items on mainmenu Object.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 37

If you need a separator bar , right click on your menu then go to insert-
>Separator.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 38

After creating the Menu on the form , you have to double click on each
menu item and write the programs there depends on your requirements. The
following Vb.Net program shows how to show a messagebox when clicking a
menu item.

Error Handling

The error handling construct in Visual Studio .NET is known as structured
exception handling. The constructs used may be new to Visual Basic users,
but should be familiar to users of C++ or Java.

Structured exception handling is straightforward to implement, and the same
concepts are applicable to either VB.NET or C#. Throughout this section,
example code will be shown in both languages.

VB .NET allows backward compatibility by also providing unstructured
exception handling, via the familiar On Error GoTo statement and Err object,
although this model is not discussed in this section.

Exceptions

Exceptions are used to handle error conditions in Visual Studio .NET. They
provide information about the error condition.

An exception is an instance of a class which inherits from the
System.Exception base class. Many different types of exception class are
provided by the .NET Framework, and it is also possible to create your own
exception classes. Each type extends the basic functionality of the
System.Exception class by allowing further access to information about the
specific type of error that has occurred.

An instance of an Exception class is created and thrown when the .NET
Framework encounters an error condition. You can deal with exceptions by
using the Try, Catch Finally construct.

Try, Catch, Finally

This construct allows you to catch errors that are thrown within your code. An
example of this construct is shown below. An attempt is made to rotate an
envelope, which throws an error.

Try
 Dim env As IEnvelope = New EnvelopeClass()
 env.PutCoords(0D, 0D, 10D, 10D)
 Dim trans As ITransform2D = env
 trans.Rotate(env.LowerLeft, 1D)
Catch ex As System.Exception
 MessageBox.Show("Error: " + ex.Message)
Finally

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 39

 ' Perform any tidy up code.
End Try

The Try block is placed around the code which may fail. If an error is thrown
within the Try block, the point of execution will switch to the first Catch block.

The Catch block handles a thrown error. A Catch block is executed when the
Type of a thrown error matches the Type of error specified by the Catch
block. You can have more than one Catch block to handle different kinds of
errors. The code shown below checks first if the exception thrown is a
DivideByZeroException.

Try, Catch and Finally keywords.

The Try, Catch and Finally keywords are usually referred to as Error Handling.
Handling exceptions with these methods will stop your application from
receiving runtime errors (errors encountered during running the application)
caused by exceptions.

When you handle these errors, VB.NET gives you the ability to get a wealth of
information about the exception and ways to let your application correspond
according to them. Before we get into getting exception information, let’s
talk the complete basics.

 Try - The Try keyword will tell the compiler that we want to handle an
area for errors. The Try keyword must have a Catch method, and must
be encapsulated in an End Try statement.

 Catch - The Catch keyword tells the application what to do if an error
occurs. It will stop the application from crashing, and let the
application do the rest.

 Finally - The finally keyword will occur regardless if the Try method
worked successfully or a Catch method was used. The finally keyword is
optional.

US04CBCA21 Unit-3 Visual Programming

Payal Sheth 40

Here is an example of a basic Try...Catch method:

01 Try
02 ’Create a new integer variable.
03 Dim anInteger As Integer = 0
04 ' Divide zero by zero to produce a DivideByZeroException exception.
05 anInteger \= 0
06 Catch ex As Exception
07 ' Show an error telling the user an error occured.
08 MessageBox.Show("An error occured")
09 Finally
10 ' Tell the user that it has got to the Finally statement.
11 MessageBox.Show("This has finally happened. :)")
12 End Try

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 1 of 29

Unit : 4

Database Programming With ADO.NET

 ADO.NET – introduction and applications
 ADO.NET – architecture (connected and disconnected)
 Database connectivity using ADO.NET
 Use of Data sources, Server Explorer and working with DataSet
 Populating data in a DataGridView
 Working with report

ADO.NET – introduction and applications

 ADO.NET is a part of the Microsoft .Net Framework.
 The full form of ADO.Net is ActiveX® Data Objects.
 ADO.Net has the ability to separate data access mechanisms, data manipulation mechanisms

and data connectivity mechanisms.
 ADO.Net is a set of classes that allow application to read and write information in databases.
 ADO.Net can be used by any .Net Language.
 It’s concept. It’s not a programming language.
 ADO.Net introduces the concept of disconnected architecture.
 We need to add System.Data namespace for work with ADO.Net
 It’s a next version of ActiveX Data Objects (ADO) technology which was used in VB6.0.

ADO.NET provides consistent access to data sources such as SQL Server and XML, and to data
sources exposed through OLE DB and ODBC. Data-sharing consumer applications can use
ADO.NET to connect to these data sources and retrieve, handle, and update the data that they
contain.

ADO.NET separates data access from data manipulation into discrete components that can be
used separately. ADO.NET includes .NET Framework data providers for connecting to a
database, executing commands, and retrieving results. Those results are either processed directly,
placed in an ADO.NET DataSet object in order to be exposed to the user in an ad hoc manner,
combined with data from multiple sources, or passed between tiers. The DataSet object can also
be used independently of a .NET Framework data provider to manage data local to the
application or sourced from XML.

The ADO.NET classes are found in System.Data.dll, and are integrated with the XML classes
found in System.Xml.dll. For sample code that connects to a database, retrieves data from it, and
then displays that data in a console window.

ADO.NET provides functionality to developers who write managed code similar to the
functionality provided to native component object model (COM) developers by ActiveX Data
Objects (ADO). We recommend that you use ADO.NET, not ADO, for accessing data in your
.NET applications

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 2 of 29

Comparison between ADO and ADO.NET

 ADO ADO.NET
Data access ADO used connected data

usage. (Connection-
Oriented Models)

ADO.NET used
disconnected data
environment. (Disconnected
Models)

XML Support In ADO XML Support is
limited.

In ADO.NET XML robust
Support.

Format of data transferring ADO used technology to
access data and is COM –
Based.

ADO.NET uses xml for
transmitting data to and
from your database and web
application.

Data provider In ADO disconnected data
provide by Record Set.

In ADO.NET disconnected
data provide by DataSet and
DataAdpter.

Tables In ADO, Record Set, is like
a single table or query
result.

In ADO.NET DataSet, can
contain multiple tables.

Client connection In ADO client connection
model is very poor. Client
application needs to be
connected to data-sever
while working on the data.

In ADO.NET client
disconnected as soon as the
data is fetched or processed.
DataSet is always
disconnected.

Advantages of ADO.NET

Interoperability

ADO.NET applications can take advantage of the flexibility and broad acceptance of XML.
Because XML is the format for transmitting datasets across the network, any component that can
read the XML format can process data. In fact, the receiving component need not be an
ADO.NET component at all: The transmitting component can simply transmit the dataset to its
destination without regard to how the receiving component is implemented. The destination
component might be a Visual Studio application or any other application implemented with any
tool whatsoever. The only requirement is that the receiving component be able to read XML. As
an industry standard, XML was designed with exactly this kind of interoperability in mind.

Maintainability

In the life of a deployed system, modest changes are possible, but substantial, architectural
changes are rarely attempted because they are so difficult. That is unfortunate, because in a
natural course of events, such substantial changes can become necessary. For example, as a
deployed application becomes popular with users, the increased performance load might require
architectural changes. As the performance load on a deployed application server grows, system
resources can become scarce and response time or throughput can suffer. Faced with this
problem, software architects can choose to divide the server's business-logic processing and user-

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 3 of 29

interface processing onto separate tiers on separate machines. In effect, the application server tier
is replaced with two tiers, alleviating the shortage of system resources.

The problem is not designing a three-tiered application. Rather, it is increasing the number of
tiers after an application is deployed. If the original application is implemented in ADO.NET
using datasets, this transformation is made easier. Remember, when you replace a single tier with
two tiers, you arrange for those two tiers to trade information. Because the tiers can transmit data
through XML-formatted datasets, the communication is relatively easy.

Programmability

ADO.NET data components in Visual Studio encapsulate data access functionality in various
ways that help you program more quickly and with fewer mistakes. For example, data commands
abstract the task of building and executing SQL statements or stored procedures.

Similarly, ADO.NET data classes generated by the designer tools result in typed datasets. This in
turn allows you to access data through typed programming. The code for the typed dataset is
easier to read. It is also easier to write, because statement completion is provided.

Performance

For disconnected applications, ADO.NET datasets offer performance advantages over ADO
disconnected recordsets. When using COM marshalling to transmit a disconnected recordset
among tiers, a significant processing cost can result from converting the values in the recordset
to data types recognized by COM. In ADO.NET, such data-type conversion is not necessary.

Scalability

Because the Web can vastly increase the demands on your data, scalability has become critical.
Internet applications have a limitless supply of potential users. Although an application might
serve a dozen users well, it might not serve hundreds —or hundreds of thousands — equally
well. An application that consumes resources such as database locks and database connections
will not serve high numbers of users well, because the user demand for those limited resources
will eventually exceed their supply.

ADO.NET accommodates scalability by encouraging programmers to conserve limited
resources. Because any ADO.NET application employs disconnected access to data, it does not
retain database locks or active database connections for long durations.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 4 of 29

ADO.NET Architecture

Data processing has traditionally relied primarily on a connection-based, two-tier model. As data
processing increasingly uses multi-tier architectures, programmers are switching to a
disconnected approach to provide better scalability for their applications.

The two main components of ADO.NET 3.0 for accessing and manipulating data are the .NET
Framework data providers and the DataSet.

.NET Framework Data Providers

The .NET Framework Data Providers are components that have been explicitly designed for data
manipulation and fast, forward-only, read-only access to data. The Connection object provides
connectivity to a data source. The Command object enables access to database commands to
return data, modify data, run stored procedures, and send or retrieve parameter information. The
DataReader provides a high-performance stream of data from the data source. Finally, the
DataAdapter provides the bridge between the DataSet object and the data source. The
DataAdapter uses Command objects to execute SQL commands at the data source to both load
the DataSet with data and reconcile changes that were made to the data in the DataSet back to
the data source.

The DataSet

The ADO.NET DataSet is explicitly designed for data access independent of any data source. As
a result, it can be used with multiple and differing data sources, used with XML data, or used to
manage data local to the application. The DataSet contains a collection of one or more
DataTable objects consisting of rows and columns of data, and also primary key, foreign key,

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 5 of 29

constraint, and relation information about the data in the DataTable objects. The following
diagram illustrates the relationship between a .NET Framework data provider and a DataSet.

Selecting a DataReader or a DataSet

When you decide whether your application should use a DataReader or a DataSet, consider the
type of functionality that your application requires. Use a DataSet to do the following:

 Cache data locally in your application so that you can manipulate it. If you only need to
read the results of a query, the DataReader is the better choice.

 Remote data between tiers or from an XML Web service.
 Interact with data dynamically such as binding to a Windows Forms control or combining

and relating data from multiple sources.
 Perform extensive processing on data without requiring an open connection to the data

source, which frees the connection to be used by other clients.

If you do not require the functionality provided by the DataSet, you can improve the
performance of your application by using the DataReader to return your data in a forward-only,
read-only manner. Although the DataAdapter uses the DataReader to fill the contents of a
DataSet, by using the DataReader, you can boost performance because you will save memory
that would be consumed by the DataSet, and avoid the processing that is required to create and
fill the contents of the DataSet.

Connected Architecture of ADO.NET

The architecture of ADO.net, in which connection must be opened to access the data retrieved
from database is called as connected architecture. Connected architecture was built on the
classes connection, command, datareader and transaction.

Connection : in connected architecture also the purpose of connection is to just establish
aconnection to database and it self will not transfer any data.

DataReader : DataReader is used to store the data retrieved by command object and make
it available for .net application. Data in DataReader is read only and within the DataReader you
can navigate only in forward direction and it also only one record at a time.

To access one by one record from the DataReader, call Read() method of the DataReader whose
return type is bool. When the next record was successfully read, the Read() method will return
true and otherwise returns false.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 6 of 29

Disconnected Architecture in ADO.NET

The architecture of ADO.net in which data retrieved from database can be accessed even when
connection to database was closed is called as disconnected architecture. Disconnected
architecture of ADO.net was built on classes connection, dataadapter, commandbuilder and
dataset and dataview.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 7 of 29

Connection : Connection object is used to establish a connection to database and connectionit
self will not transfer any data.

DataAdapter : DataAdapter is used to transfer the data between database and dataset. It
has commands like select, insert, update and delete. Select command is used to retrieve data from
database and insert, update and delete commands are used to send changes to the data in dataset
to database. It needs a connection to transfer the data.

CommandBuilder : by default dataadapter contains only the select command and it
doesn’tcontain insert, update and delete commands. To create insert, update and delete
commands for the dataadapter, commandbuilder is used. It is used only to create these
commands for the dataadapter and has no other purpose.

DataSet : Dataset is used to store the data retrieved from database by dataadapter and make
it available for .net application.

To fill data in to dataset fill() method of dataadapter is used and has the following syntax.

Da.Fill(Ds,”TableName”);

When fill method was called, dataadapter will open a connection to database, executes select
command, stores the data retrieved by select command in to dataset and immediately closes the
connection.

As connection to database was closed, any changes to the data in dataset will not be directly sent
to the database and will be made only in the dataset. To send changes made to data in dataset to
the database, Update() method of the dataadapter is used that has the following syntax.

Da.Update(Ds,”Tablename”);

When Update method was called, dataadapter will again open the connection to database,
executes insert, update and delete commands to send changes in dataset to database and
immediately closes the connection. As connection is opened only when it is required and will be
automatically closed when it was not required, this architecture is called disconnected
architecture.

A dataset can contain data in multiple tables.

DataView : DataView is a view of table available in DataSet. It is used to find a record, sort
the records and filter the records. By using dataview, you can also perform insert, update and
delete as in case of a DataSet.

DataReader is Connected Architecture since it keeps the connection open until all rows are
fetched one by one

DataSet is DisConnected Architecture since all the records are brought at once and there is no
need to keep the connection alive

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 8 of 29

Difference between Connected and disconnected architecture

Connected (DataReader) Disconnected (DataSet)

It is connection oriented. It is disconnection oriented.

Connected methods gives faster
performance

Disconnected get low in speed and
performance.

connected can hold the data of single table disconnected can hold multiple tables of data

connected you need to use a read only
forward only data reader

disconnected you cannot

Data Reader can't persist the data Data Set can persist the data

It is Read only, we can't update the data. We can update data

ADO.NET Components

There are two major components of ADO.NET:

1. DataSet

2. DataProvider

DataSet : represents either an entire database or a subset of database. It can contain tables and
relationships between those tables.

Data Provider is a collection of components like Connection, Command, DataReader,
DataAdapter objects and handles communication with a physical data store and the dataset.

Data Provider

 The data provider is responsible for providing and maintaining the connection to the
database.

 It is a set of classes that can be used for communicating with database, and
holding/manipulating data

 The DataProvider connects to the data source on behalf of ADO.NET.

 The data source can be Microsoft SQL Server or Oracle database and OLEDB data
provider.

 The data provider components are specific to data source.

The following lists the .NET Framework data providers that are included in the .NET
Framework.

For SQL Server

 Imports System.Data.SqlClient namespace.

 It provides data access for Microsoft SQL Server.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 9 of 29

For OLEDB

 Imports System.Data.OleDb namespace.

 It provides data sources exposed using OLEDB.

 We can use OLEDB for connect Microsoft Access

For ODBC

 Imports System.Data.Odbc namespace.

 It provides data sources exposed using ODBC

For Oracle

 Imports System.Data.OracleClient namespace.

 It provides data access for oracle.

Data Provider’s common set of classes for all DataSource.

1. Connection

2. Command

3. DataAdapter

4. DataReader

Conncetion

 It establishes or connects a connection to the data source.

 In SQL Server the connection can establish using SqlConnection object.

Command

 Fires SQL commands or perform some action on the data source, such as insert, update,
delete.

 In SQL Server command can fires using SqlCommand object.

DataAdapter

 It’s a bride between Data source and DataSet object for transferring data.

 In SQL Server the Data Adapter can create using SqlDataAdapter object

DataReader

 Used when large list of results one record at a time.

 It reads records in a read-only, forward-only mode.

 In SQL Server the datareader can create using SqlDataReader object

Use of Server Explorer

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 10 of 29

Server Explorer/Database Explorer is the server management console for Visual Studio. Use
this window to open data connections and to log on to servers and explore their system services.

Use Server Explorer/Database Explorer to view and retrieve information from all of the
databases you are connected to. You can do the following:

 List database tables, views, stored procedures, and functions
 Expand individual tables to list their columns and triggers
 Right-click a table to perform actions, such as showing the table's data or viewing the

table's definition, from its shortcut menu.

To access Server Explorer/Database Explorer, choose Server Explorer or Database
Explorer on the View menu. To make the Server Explorer/Database Explorer window close
automatically when not in use, choose Auto Hide on the Window menu.

Namespaces

System.Data The System.Data namespace provides access to classes that represent the
ADO.NET architecture. ADO.NET lets you build components that
efficiently manage data from multiple data sources.

Consists of the classes that constitute the ADO.NET architecture, which
is the primary data access method for managed applications. The
ADO.NET architecture enables you to build components that efficiently
manage data from multiple data sources. ADO.NET also provides the
tools to request, update, and reconcile data in distributed applications.

System.Data.OleDb The System.Data.OleDb namespace is the.NET Framework Data
Provider for OLE DB.

Classes that make up the .NET Framework Data Provider for OLE DB-
compatible data sources. These classes allow you to connect to an OLE
DB data source, execute commands against the source, and read the
results.

System.Data.SqlClient The System.Data.SqlClient namespace is the.NET Framework Data
Provider for SQL Server.

Classes that make up the .NET Framework Data Provider for SQL
Server, which allows you to connect to SQL Server 7.0, execute
commands, and read results. The System.Data.SqlClient namespace is
similar to the System.Data.OleDb namespace, but is optimized for
access to SQL Server 7.0 and later.

System.Data.SqlTypes The System.Data.SqlTypes namespace provides classes for native data
types in SQL Server. These classes provide a safer, faster alternative to
the data types provided by the .NET Framework common language

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 11 of 29

runtime (CLR). Using the classes in this namespace helps prevent type
conversion errors caused by loss of precision. Because other data types
are converted to and from SqlTypes behind the scenes, explicitly
creating and using objects within this namespace also yields faster code.

Connection Object

A primary function of any database application is connecting to a data source and retrieving the
data that it contains. The .NET Framework data providers of ADO.NET serve as a bridge
between an application and a data source, allowing you to execute commands as well as to
retrieve data by using a DataReader or a DataAdapter. A key function of any database
application is the ability to update the data that is stored in the database

In ADO.NET you use a Connection object to connect to a specific data source by supplying
necessary information in a connection string. The Connection object you use depends on the
type of data source.

Each .NET Framework data provider included with the .NET Framework has a Connection
object: the .NET Framework Data Provider for OLE DB includes an OleDbConnection object,
the .NET Framework Data Provider for SQL Server includes a SqlConnection object, the .NET
Framework Data Provider for ODBC includes an OdbcConnection object, and the .NET
Framework Data Provider for Oracle includes an OracleConnection object.

Steps to connect database:
1. Create Database.
2. Start writing connection string in VB.Net.
3. Set the provider.
4. Specify the data source.

Connection object have ConnectionString property. Depends on the parameter specified in the
Connection String, ADO.Net Connection Object connect to the specified Database.

Properties :

ConnectionString : Gets/sets the connection string to open a database.

Database : Gets the name of the database to open

DataSource : Gets the name of the SQL Server to use.

State : Gets the connection's current state

Methods :

Close : Closes the connection to the data provider.

Open : Opens a database connection.
Command Object :

 It’s depended on Connection Object.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 12 of 29

 Command objects are used to execute commands to a database across a data connection.
 The Command object in ADO.NET executes SQL statements and stored procedures

against the data source specified in the connection object.
 The Command objects has a property called Command Text, which contains a String

(Query) value that represents the command that will be executed in the Data Source.

There are many ways to initialize Command object:

For Example

Dim con As New SqlConnection
Dim cmd As SqlCommand
Dim str1 As String

Str1 = "Insert into stud values(‘”+ TextBox1.Text +”’, ‘”+ TextBox1.Text +”’)
con.Open()
cmd = New SqlCommand(str1, con)
cmd.ExecuteNonQuery()
con.close()

OR

Dim con As New SqlConnection
Dim cmd As SqlCommand

con.Open()
cmd.Connection = con
cmd.CommandText = “Insert into stud values(‘”+ TextBox1.Text +”’, ‘”+ TextBox1.Text +”’)”
cmd.ExecuteNonQuery()
con.close()

Properties

Property Meaning
CommandText Gets/sets the SQL statement (or stored procedure) for this

command to execute.
CommandType Gets/sets the type of the CommandText property (typically set

to text for SQL).
Connection Gets/sets the SqlConnection to use.
Parameters Gets the command parameters.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 13 of 29

Methods

Methods Meaning
ExecuteNonQuery Executes a non-row returning SQL statement, returning the

number of affected rows.
ExecuteReader Creates a data reader using the command
ExecuteScalar Executes the command and returns the value in the first

column in the first row of the result.

DataAdapter Object :

The SqlDataAdapter, serves as a bridge between a DataSet and SQL Server for retrieving and
saving data. The SqlDataAdapter provides this bridge by mapping Fill, which changes the data
in the DataSet to match the data in the data source, and Update, which changes the data in the
data source to match the data in the DataSet, using the appropriate Transact-SQL statements
against the data source. The update is performed on a by-row basis. For every inserted, modified,
and deleted row, the Update method determines the type of change that has been performed on it
(Insert, Update, or Delete). Depending on the type of change, the Insert, Update, or Delete
command template executes to propagate the modified row to the data source.

When the SqlDataAdapter fills a DataSet, it creates the necessary tables and columns for the
returned data if they do not already exist. SqlDataAdapter is used in conjunction with
SqlConnection and SqlCommand to increase performance when connecting to a SQL Server
database.

The SqlDataAdapter also includes the SelectCommand, InsertCommand, DeleteCommand,
UpdateCommand properties to facilitate the loading and updating of data.

When an instance of SqlDataAdapter is created, the read/write properties are set to initial
values. For a list of these values, see the SqlDataAdapter constructor.

The InsertCommand, DeleteCommand, and UpdateCommand are generic templates that are
automatically filled with individual values from every modified row through the parameters
mechanism.

For every column that you propagate to the data source on Update, a parameter should be added
to the InsertCommand, UpdateCommand, or DeleteCommand. The SourceColumn property
of the DbParameter object should be set to the name of the column. This setting indicates that the
value of the parameter is not set manually, but is taken from the particular column in the
currently processed row.

Properties

Name Meaning
DeleteCommand Gets or sets a Transact-SQL statement or stored procedure to

delete records from the data set.
InsertCommand Gets or sets a Transact-SQL statement or stored procedure to

insert new records into the data source.
SelectCommand Gets or sets a Transact-SQL statement or stored procedure used

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 14 of 29

to select records in the data source.
TableMappings Gets a collection that provides the master mapping between a

source table and a DataTable. (Inherited from DataAdapter.)
UpdateCommand Gets or sets a Transact-SQL statement or stored procedure used

to update records in the data source.

Methods Meaning
Fill Adds or updates rows in a data set to match those in the data source.

Creates a table named "Table" by default
Update

Updates the data store by calling the INSERT, UPDATE, or DELETE
statements for each inserted, updated, or deleted row in the given dataset.

For Example :

Dim da As SqlDataAdapter
Dim ds As New DataSet
str1 = "select * from stud"
da = New SqlDataAdapter(str1, con)
da.Fill(ds)

DataSet Object

 ADO.NET caches data locally on the client and store that data into DataSet.
 The dataset is a disconnected, I-memory representation of data.
 It’s not exact copy the database.
 It can be considered as a local copy of the some portions of the database.
 The DataSet contains a collection of one or more DataTable objects made up of rows and

columns of data.
 Tables can be identified in DataSet using DataSet’s Tables property.
 It also contains primary key, foreign key, constraint and relation information about the

data in the DataTable objects.
 DataSet are also fully XML-featured.
 Whaterer operations are made by the user it is stored temporary in the DataSet, when the

use of this DataSet is finished, changes can be made back to the central database for
updating.

 DataSet doesn’t “know” where the data it contains came from and if fact it can contain
data from multiple sources.

 The DataSet is populated DataAdapter’s Fill method.

The DataSet is a major component of the ADO.NET architecture. The DataSet consists of a
collection of DataTable objects that you can relate to each other with Data Relation objects. You
can also enforce data integrity in the DataSet by using the UniqueConstraint and
ForeignKeyConstraint objects. For further details about working with DataSet objects.

Whereas DataTable objects contain the data, the DataRelationCollection allows you to navigate
though the table hierarchy. The tables are contained in a DataTableCollection accessed through
the Tables property. When accessing DataTable objects, note that they are conditionally case
sensitive.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 15 of 29

For example, if one DataTable is named "mydatatable" and another is named "Mydatatable", a
string used to search for one of the tables is regarded as case sensitive. However, if
"mydatatable" exists and "Mydatatable" does not, the search string is regarded as case
insensitive. For more information about working with DataTable objects.

A DataSet can read and write data and schema as XML documents. The data and schema can
then be transported across HTTP and used by any application, on any platform that is XML-
enabled. You can save the schema as an XML schema with the WriteXmlSchema method, and
both schema and data can be saved using the WriteXml method. To read an XML document that
includes both schema and data, use the ReadXml method.

In a typical multiple-tier implementation, the steps for creating and refreshing a DataSet, and in
turn, updating the original data are to:

1. Build and fill each DataTable in a DataSet with data from a data source using a
DataAdapter.

2. Change the data in individual DataTable objects by adding, updating, or deleting DataRow
objects.

3. Invoke the GetChanges method to create a second DataSet that features only the changes
to the data.

4. Call the Update method of the DataAdapter, passing the second DataSet as an argument.
5. Invoke the Merge method to merge the changes from the second DataSet into the first.
6. Invoke the AcceptChanges on the DataSet. Alternatively, invoke RejectChanges to cancel

the changes.
Properties

Name Description

Relations Get the collection of relations that link tables and allow navigation from parent
tables to child tables.

Tables Gets the collection of tables contained in the DataSet.

For Example :
Dim da As SqlDataAdapter
Dim ds As New DataSet
str1 = "select * from stud"
da = New SqlDataAdapter(str1, con)
da.Fill(ds)
DataGridView1.DataSource = ds.Tables(0)

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 16 of 29

DataReader Object

Provides a way of reading a forward-only stream of rows from a SQL Server database

To create a SqlDataReader, you must call the ExecuteReader method of the SqlCommand
object, instead of directly using a constructor.

While the SqlDataReader is being used, the associated SqlConnection is busy serving the
SqlDataReader, and no other operations can be performed on the SqlConnection other than
closing it. This is the case until the Close method of the SqlDataReader is called. For example,
you cannot retrieve output parameters until after you call Close.

Changes made to a result set by another process or thread while data is being read may be visible
to the user of the SqlDataReader. However, the precise behavior is timing dependent.

IsClosed and RecordsAffected are the only properties that you can call after the SqlDataReader
is closed. Although the RecordsAffected property may be accessed while the SqlDataReader
exists, always call Close before returning the value of RecordsAffected to guarantee an accurate
return value.

Properties

Name Description

Connection Gets the SqlConnection associated with the SqlDataReader.

IsClosed Retrieves a Boolean value that indicates whether the specified SqlDataReader
instance has been closed. (Overrides DbDataReader.IsClosed.)

Item Overloaded. Gets the value of a column in its native format.

Methods

Name Description

Close Closes the SqlDataReader object. (Overrides DbDataReader.Close().)

Read Advances the SqlDataReader to the next record. (Overrides DbDataReader.Read().)

Dim reader As SqlDataReader
sql = " Select * from stud"
Try
 con.Open()
 cmd = New SqlCommand(sql, con)
 reader = cmd.ExecuteReader()
 While reader.Read()
 MsgBox(reader.Item(0) & " - " & reader.Item(1))
 End While
 reader.Close()
 cmd.Dispose()

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 17 of 29

 con.Close()
Catch ex As Exception
 MsgBox("Can not open connection ! ")
End Try

DataGridView Control

The DataGridView control provides a powerful and flexible way to display data in a tabular
format. You can use the DataGridView control to show read-only views of a small amount of
data, or you can scale it to show editable views of very large sets of data.

You can extend the DataGridView control in a number of ways to build custom behaviors into
your applications. For example, you can programmatically specify your own sorting algorithms,
and you can create your own types of cells. You can easily customize the appearance of the
DataGridView control by choosing among several properties. Many types of data stores can be
used as a data source, or the DataGridView control can operate with no data source bound to it.

The DataGridView control provides a customizable table for displaying data. The
DataGridView class allows customization of cells, rows, columns, and borders through the use
of properties such as DefaultCellStyle, ColumnHeadersDefaultCellStyle, CellBorderStyle, and
GridColor.

You can use a DataGridView control to display data with or without an underlying data source.
Without specifying a data source, you can create columns and rows that contain data and add
them directly to the DataGridView using the Rows and Columns properties. You can also use
the Rows collection to access DataGridViewRow objects and the DataGridViewRow.Cells
property to read or write cell values directly. The Item indexer also provides direct access to
cells.

As an alternative to populating the control manually, you can set the DataSource and
DataMember properties to bind the DataGridView to a data source and automatically populate it
with data. For more information, see Displaying Data in the Windows Forms DataGridView
Control.

When working with very large amounts of data, you can set the VirtualMode property to true to
display a subset of the available data. Virtual mode requires the implementation of a data cache
from which the DataGridView control is populated. For more information, see Data Display
Modes in the Windows Forms DataGridView Control.

For additional information about the features available in the DataGridView control, see
DataGridView Control (Windows Forms). The following table provides direct links to common
tasks.

Explain the steps to bind DataGridView.

Step : 1 Take New VB.NET Project
Step : 2 Add database in your project (Named : dbemp.mdf)

Add New Table in database file (Named : emp) from the Server Explorer Window
Add some records in that table

Step : 3 Now add emp table to the DBEmpDataSet.xsd file

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 18 of 29

Step : 4 Add DataGridView control on the form
Step : 5 Select the Choose Data Source

In that click on Other Data Source
 Project Data Source
 DBEmpDataSet
 Emp Table Name

Step : 6 At the end, Run the project

Binding Data Grids

As we've already seen, you can use data grids to display entire data tables. To bind a data grid to
a table, you can set the data grid's DataSource property (usually to a dataset, such as dsDataSet)
and DataMember property (usually to text naming a table like "authors"). At run time, you can
set both of these properties at once with the built-in data grid method SetDataBinding (data
grids are the only controls that have this method):

DataGrid1.SetDataBinding(dsDataSet, "authors")

You can use these data sources with the data grid's DataSource property:

 DataTable objects
 DataView objects
 DataSet objects
 DataViewManager objects
 single dimension arrays

To determine which cell was selected by the user, use the CurrentCell property. You can
change the value of any cell using the Item property, which can take either the row or column
indexes of the cell. And you can use the CurrentCell Changed event to determine when the
user selects another cell.

Example

First, you should add a DataGridView collection to your Windows Forms application by double-
clicking on the control name in the Visual Studio designer panel. After you add the control, you
can add the Load event on the form, which you can create from the Form's event pane.

Public Class Form1
 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 19 of 29

 DataGridView1.DataSource = GetDataTable()
 End Sub

 Private Function GetDataTable() As DataTable
 Return New DataTable()
 End Function
End Class

This event handler is executed when the program starts up and when the DataGridView control
is displayed. The Form1_Load autogenerated subroutine calls into the GetDataTable function,
which would return a DataTable from your database in SQL Server.

Assigning the DataSource property on DataGridView does not copy any data, but instead
allows the DataGridView to read in the DataTable and display all its contents on the screen in
grid form. This is often the most efficient way to populate DataGridView.

Explain the steps to bind the application with the Database in ADO .net using Binding
Navigator control

Step : 1 Take New VB.NET Project
Step : 2 Add two labels and two textbox on the form1
Step : 3 Add database in your project (Named : dbemp.mdf)

Add New Table in database file (Named : emp) from the Server Explorer Window
Add some records in that table

Step : 4 Now add emp table to the DBEmpDataSet.xsd file
Step : 5 After creating table

Add BindingNavigator1 and BindingSource1 Control to the form
Step : 6 Now set the property of BindingSource1 control

 DataSource = DBEmpDataSet
 DateMember = emp

Step : 7 Now Set the property of BindingNavigator1 control
 Right click on BindingNavigator1 control and select Edit Items…
 Set BindingSource = BindingSource1
 Then ok

Step : 8 Now Set the property of each textbox control
 Select TextBox1 and set the DataBinding property
 Click on Advanced property. The Formatting and Advanced Binding
Window is appeared. In this window set Binding = BindingSource1 – empno
Similarly, set all the textbox control

Step : 9 At the end, Run the project

Properties of BindingSource Control:

1) Datasource: Gets or sets the data source that the connector binds to.

Syntax: instance.DataSource = value

2) Datamember: Gets or sets the specific list in the data source to which the connector currently
binds to.

Syntax: instance.DataMember = value

Properties of BindingNavigator Control:

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 20 of 29

1) BindingSource: Gets or sets the System.Windows.Forms.BindingSource component that is
the source of data.

Syntax: instance.BindingSource = value

Explain use of “ExecuteScaler” , “ExecuteNonQuery” and “ExecuteReader” method in
detail.

ExecuteNonQuery

ExecuteNonQuery() is one of the most frequently used method in SqlCommand Object and is
used for executing statements that do not return result set. ExecuteNonQuery() performs Data
Definition tasks as well as Data Manipulation tasks also. The Data Definition tasks like creating
Stored Procedures and Views perform by ExecuteNonQuery() . Also Data Manipulation tasks
like Insert , Update and Delete perform by ExecuteNonQuery().

The following example shows how to use the method ExecuteNonQuery() through SqlCommand
Object.

sql = "Insert into stud values(‘”+ TextBox1.Text +”’, ‘”+ TextBox1.Text +”’)
Try
 con.Open()
 cmd = New SqlCommand(Sql, con)
 cmd.ExecuteNonQuery()
 cmd.Dispose()
 con.Close()
 MsgBox(" ExecuteNonQuery in SqlCommand executed !!")
Catch ex As Exception
 MsgBox("Can not open connection ! ")
End Try

ExecuteReader

ExecuteReader() in SqlCommand Object send the SQL statements to Connection Object and
populate a SqlDataReader Object based on the SQL statement. When the ExecuteReader method
in SqlCommand Object execute, it instantiate a SqlClient.SqlDataReader Object.

The SqlDataReader Object is a stream-based, forward-only, read-only retrieval of query results
from the Data Source, which do not update the data. The SqlDataReader cannot be created
directly from code, they created only by calling the ExecuteReader method of a Command
Object.

Dim reader As SqlDataReader
sql = " Select * from stud"
Try
 con.Open()
 cmd = New SqlCommand(sql, con)
 reader = cmd.ExecuteReader()

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 21 of 29

 While reader.Read()
 MsgBox(reader.Item(0) & " - " & reader.Item(1))
 End While
 reader.Close()
 cmd.Dispose()
 con.Close()
Catch ex As Exception
 MsgBox("Can not open connection ! ")
End Try

 ExecuteScaler

ExecuteScalar() in SqlCommand Object is used for get a single value from Database after its
execution. It executes SQL statements or Stored Procedure and returned a scalar value on first
column of first row in the Result Set. If the Result Set contains more than one columns or rows ,
it takes only the first column of first row, all other values will ignore. If the Result Set is empty it
will return a Null reference.

It is very useful to use with aggregate functions like Count(*) or Sum() etc. When compare to
ExecuteReader() , ExecuteScalar() uses fewer System resources.

sql = " Select Count(*) from stud"
Try

con.Open()
cmd = New SqlCommand(sql, con)
Dim count As Int32 = Convert.ToInt32(cmd.ExecuteScalar())
cmd.Dispose()
con.Close()
MsgBox(" No. of Rows " & count)

Catch ex As Exception
MsgBox("Can not open connection ! ")

End Try

What are the four common SQL commands used to retrieve and modify data in a SQL
Database? Also explain each of them.

Four Common SQL Commands :

1. Select
2. Insert
3. Update
4. Delete

Select

Retrives data from one or more tables or views.
Systax :
 Select * from TableName

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 22 of 29

 Select Columnname1, Columnname2 from TableName
 Select * from TableName Where <Condition>
 Select * from TableName Order by Columnnane
Example :
 Select * from stud
 Select Sno,Sname from stud
 Select * from stud where city = “Anand”
 Select * from stud order by total

Insert

Create a new row and inserts values into specified columns

Syntax:
 Insert into TableName values(Value1,Value2,…)

Example :

 Insert into stud values (1,’ABC’)
Update

Changes the values of individual columns in one or more existing rows in a table.

Syntax :
 Update TableName set Columnname = value, ….
 Update TableName set Columnname = value where <condition>

Example :
 Update stud set sname = ‘xyz’ where sno = 1

Delete

Delete one or more rows from a table

Syntax :
 Delete from TableName
 Delete from TableName where <condition>

Example :

 Delete from stud
 Delete from stud where sno = 5

Additional Questions:

1. Explain the step, how can we retrieve data in DataSet?

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 23 of 29

To load data from a database into a DataSet, follow these steps:

1. Start Visual Studio .NET.

2. Create a new Console Application project in Visual VB.NET.

3. Make sure that the project references the System and System.Data namespaces.

4. Use the imports statement on System.Data.SqlClient namespaces so that you are not
required to qualify declarations from these namespaces later in your code. You must
use these statements before any other declarations.

imports System.Data.SqlClient

5. The first step to get data from the database to the DataSet is to establish a database
connection, which requires a System.Data.SqlClient.SqlConnection object and a
connection string. The connection string in the code to follow connects a SQL Server
server that is located on the local computer (the computer where the code is running).
You must modify this connection string as appropriate for your environment. After
the SqlConnection object is created, call the Open method of that object to establish
the actual database link.

Dim sConnectionString as String
sConnectionString = "Password=myPassword;User ID=myUserID ;Initial
Catalog=Pubs; Data Source=(local)"
Dim objConn as new SqlConnection
objConn.ConnectionString=sConnectionString
objConn.Open()

6. Create a DataAdapter object, which represents the link between the database and
your DataSet object. You can specify SQL or another type of command that is used
to retrieve data as part of the constructor object of the DataAdapter. This sample
uses a SQL statement that retrieves records from the Authors table in the Pubs
database.

Dim daAuthors as SqlDataAdapter= new SqlDataAdapter("Select * From
Authors", objConn)

7. You must declare and create an instance of a DataSet object; at which time you can
supply a name for the entire DataSet before you can start to load any data. The name
may contain several distinct tables.

Dim dsPubs as DataSet = new DataSet("Pubs");

8. The SqlDataAdapter class provides two methods, Fill and FillSchema, that are crucial
to loading this data. Both of these methods load information into a DataSet. Fill loads
the data itself, and FillSchema loads all of the available metadata about a particular
table (such as column names, primary keys, and constraints). A good way to handle the
data loading is to run FillSchema followed by Fill. For example:

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 24 of 29

daAuthors.FillSchema(dsPubs,SchemaType.Source, "Authors")
daAuthors.Fill(dsPubs,"Authors")
If you only use Fill, you can only load the basic metadata that is required to describe
the column names and data types. The Fill method does not load primary key
information. To change this default behavior, you can set
the MissingSchemaAction property of the DataAdapter object
to MissingSchemaAction.AddWithKey, which loads the primary key metadata along
with the default information. For example:
 daAuthors.MissingSchemaAction = MissingSchemaAction.AddWithKey
daAuthors.Fill(dsPubs,"Authors")

9. The data is now available as an individual DataTable object within
the Tables collection of the DataSet. If you specified a table name in the calls
to FillSchema and Fill, you can use that name to access the specific table that you
want.

 Dim tblAuthors as DataTable
tblAuthors = dsPubs.Tables("Authors")

10. You can use a For Each loop to loop through all of the DataRow objects within
the Rows collection of a DataTable. This gives you access to each row of the table. You
can access columns by name or by positional index (with '0' being the first column
position). For example:

Dim drCurrent as DataRow

foreach (drCurrentin tblAuthors.Rows)
loop
Console.WriteLine("{0} {1}",
drCurrent("au_fname").ToString(),
drCurrent("au_lname").ToString())
End Loop
Console.ReadLine()

11. Save your project. On the Debug menu, click Start to run your project and make sure
that it works.

2. Explain public methods of SqlCommand objects.

Method Description

BeginExecuteNonQuery() It is used to Initiate the asynchronous execution of the SQL

statement described by this SqlCommand.

Cancel() It tries to cancel the execution of a SqlCommand.

Clone() It creates a new SqlCommand object that is a copy of the

current instance.

CreateParameter() It creates a new instance of a SqlParameter object.

ExecuteReader() It is used to send the CommandText to the Connection and

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 25 of 29

builds a SqlDataReader.

ExecuteXmlReader() It is used to send the CommandText to the Connection and

builds an XmlReader object.

ExecuteScalar() It executes the query and returns the first column of the

first row in the result set. Additional columns or rows are

ignored.

Prepare() It is used to create a prepared version of the command by

using the instance of SQL Server.

ResetCommandTimeout() It is used to reset the CommandTimeout property to its

default value.

3. What are the features of ADO.Net?

 Batch Update

Batch update can provide a huge improvement in the performance by
making just one round trip to the server for multiple batch updates, instead of
several trips if the database server supports the batch update feature.

 Data Paging

Command object has an execute method called ExecutePageReader. This
method takes three parameters - CommandBehavior, startIndex, and
pageSize. So, if you want to get rows from 101 - 200, you can simply call this
method with start index as 101 and page size as 100.

 Connection Details

You can get more details about a connection by setting Connection's
StatisticsEnabled property to True. The Connection object provides two new
methods - RetrieveStatistics and ResetStatistics. The RetrieveStatistics method
returns a HashTable object filled with the information about the connection
such as data transferred, user details, curser details, buffer information and
transactions.

 DataTable's Load and Save Methods

In previous version of ADO.NET, only DataSet had Load and Save methods.
The Load method can load data from objects such as XML into a DataSet
object and Save method saves the data to a persistent media. Now
DataTable also supports these two methods.

You can also load a DataReader object into a DataTable by using the Load
method.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 26 of 29

 New Data Controls

In Toolbox, you will see these new controls - DataGridView, DataConnector,
and DataNavigator. Now using these controls, you can provide navigation
(paging) support to the data in data bound controls.

 DbProvidersFactories Class

This class provides a list of available data providers on a machine. You can
use this class and its members to find out the best suited data provider for
your database when writing a database independent application.

 Customized Data Provider

By providing the factory classes now ADO.NET extends its support to custom
data provider. Now you don't have to write a data provider dependent
code. You use the base classes of data provider and let the connection
string does the trick for you.

 DataReader's New Execute Methods

Now command object supports more execute methods. Besides old
ExecuteNonQuery, ExecuteReader, ExecuteScaler, and ExecuteXmlReader,
the new execute methods are ExecutePageReader, ExecuteResultSet, and
ExecuteRow.

4. Which namespaces are required to enable the use of databases in
ADO .net?

The following namespaces are required to enable the use of databases in
ASP.NET pages:

 The System.Data namespace.
 The System.Data.OleDb namespace (to use any data provider,

such as Access, Oracle, or SQL)
 The System.Data.SQLClient namespace (specifically to use SQL as

the data provider)

5. What is connection string? Explain in brief.

Connection String is a normal String representation which contains
Database connection information to establish the connection between
Database and the Application. The Connection String includes
parameters such as the name of the driver, Server name and Database
name, as well as security information such as user name and password.
Data providers use a connection string containing a collection of
parameters to establish the connection with the database.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 27 of 29

The .NET Framework provides mainly three data providers: Microsoft SQL
Server, OLEDB and ODBC.

6. Which properties are used to bind a DataGridView control?
 The DataSource property and the DataMember property are used

to bind a DataGridView control.
 Here, DataSource refers the object which binds DataGrid View,

that’s generally DataSet/DataTable/ or any object.
 DataMember refers to Table name.

7. Differentiate between Radio button and Checkbox.
 In Check box, you can select multiple options. In Option Button

(Radio button) you can select one option.
 Radio buttons are circular and check boxes are square. When you

click on a radio button, a little dot appears in the middle of the
circle when you click the check box little check mark appears in
the middle of the square.

 If you click a different choice, the dot will move to the center of the
new circle that you have selected in the radio button when you
click the check box another check appears the new box, the first
check doesn't change.

8. Differentiate between Label and LinkLabel.
 A LinkLabel control is a label control that can display a hyperlink. A

LinkLabel control is inherited from the Label class so it has all the
functionality provided by the Windows Forms Label
control.A Label control lets you place descriptive text, where the
text does not need to be changed by the user. The Label class is
defined in the System.Windows.Forms namespace.

 LinkLabel control does not participate in user input or capture
mouse or keyboard events.

9. Differentiate between Listbox and Combobox.
 In listbox we can only select item. In combobox we can write/search

and select item.
 We can see multiple items in listbox. We can see only single item in

combobox.
 We have no other styles for listbox.

We have 3 styles in combo box.
A)drop down combo
 B)simple combo
 C)drop down list
 Listbox is only listed items box.combobox is combination of textbox

and listbox.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 28 of 29

 In listbox we have scroll down and scroll up facility. In combobox we
have only dropdown facility.

 We can use checkbox with in listbox. We can't use checkbox within a
combobox.

 Listbox is much easier to handle. Combobox is not easier as well as
listbox to handle.

 We can't add image item in listbox.We can add image item in
combobox.

10. Differentiate between Listbox and CheckedListBox.
 The Windows Forms CheckedListBox control extends the ListBox control. It

does almost everything that a list box does and also can display a check
mark next to items in the list.

 Other differences between the two controls are that checked list boxes
only support DrawMode.Normal; and that checked list boxes can only
have one item or none selected. Note that a selected item appears
highlighted on the form and is not the same as a checked item.

11. What do you mean by debugging?

Debugging is the routine process of locating and removing computer
program bugs, errors or abnormalities, which is methodically handled by
software programmers via debugging tools. Debugging checks, detects and
corrects errors or bugs to allow proper program operation according to set
specifications.

Debugging is also known as debug.

12. Explain the function of STEP INTO and STEP OVER.

Step
Into

Executes one line of code and then pauses; clicking again on
this option will execute the next line. When the interpreter comes
across a subroutine call it will step into and execute each line
within the subroutine separately.

Step
Over

Similar to ‘Step Into’ except when encountering subroutine calls.
When coming across subroutine calls the interpreter will step
over all the code within the subroutine in one go.

Step
Out

All lines of code in the current subroutine are executed and the
execution point is paused once again on the line after the
subroutine call.

13. Differentiate between ADD WATCH and QUICK WATCH.

"Add to watch" adds the variable to the Watch window, so that you can see its
value changing as you step through the code.

US04CBCA21 UNIT 4 : Database Programming With ADO.NET

Payal Sheth Page 29 of 29

"Quick Watch" pops up a transient dialog showing the value, without
permanently adding it any here. When you close that dialog, you can no longer
see the value.

	US04CBCA21 - UNIT - 1.pdf
	US04CBCA21 - UNIT - 2.pdf
	
	
	
	
	
	
	
	
	
	
	

	US04CBCA21 - UNIT - 3.pdf
	US04CBCA21 - UNIT - 4.pdf

