
US03CBCA23 UNIT-II Working With Array, String And Classes

1 VP & RPTP SCIENCE COLLEGE

1 Basic IO in C++

1.1 Output / (<<) / Insertion / “Put to” operator:-

cout<< “c++ is better than c”;

 The string in the quotation marks is to be displayed on the screen.
 The identifier cout is a predefined object that represents the standard output

stream in c++.
 It is same as used in c as “printf” statement.
 The operator << is called the insertion or put to operator.
 It inserts or sends the contents of the variable on its right to object on its left.

1.2 Input / (>>) / extraction / “get from” operator : -

The statement

cin>>number1;

is an input statement and causes the program to wait for the user to type.

 The identifier ‘cin’ is a predefined object in C++ that corresponds to the standard
input stream.

 It same as used in c as “scanf” statement.
 The operator ‘>>’ is known as extraction or get from operator.
 It extracts or takes the value from the keyboard and assigns it to the variable on

its right (number1).

2 Array in C++: introduction, declaration, initialization of one, two and multi
dimensional arrays, operation on arrays

2.1 Introduction

 An array is a group of logically related data items of the same data type addressed
by a common name, and all the items are stored in contiguous memory locations.

 For the instance, the statement:
Int marks[10];

defines an array by the name marks that can hold a maximum of ten elements.
 The individual elements of an array are accessed and manipulated using the array

name followed by their index.
 The marks stored in the first subject is accessed by marks[0] and the marks stored

in the 10th subject as marks[9].
 In this case, a sequence of ten integers representing the marks are stored one after

another in memory.

US03CBCA23 UNIT-II Working With Array, String And Classes

2 VP & RPTP SCIENCE COLLEGE

2.2 Declaration

 Like other normal variables, the array variable must be defined or declared before
its use. The syntax for defining an array……

DataType ArrayName[ArraySize];

 In the definition, the array name must be a valid c++ variable, followed by an
integer value enclosed in square braces.

 The integer value indicates the maximum number of elements the array can hold.
The following are some valid array definition statements:

Int marks[100]; //integer array of size of 100
Float salary[25]; //floating-point array of size 25
Char name[50]; //character array of size 50
Int a[10], b[12], c[25]; //defines three array
Double d1, num[10]; // defines a variable and double arrray

 the representation of an array defined using the statement
int age[5];

is shown in following figure by assuming that each elements of array occupies two
bytes.

2.3 Initialization of one dimension array

 A one-dimensional-arrays can be initialized at the point of their definition as follows:
Data-type array-name[size]={element-1, element-2,…..element-n};

 For instance, the statement
Int a[3]={ 6, 9, 3 };

defines one dimensional array of order 3 and initializes all its elements.

2.4 Initialization of double dimension array

 A two-dimensional-arrays can be initialized at the point of their definition as follows:
Data-type array-name[row size][col size]={

{elements of first row},
{elements of second row},
………..
{elements of n-1 row},

};

 For instance, the statement
Int a[3][3]={

{4, 7, 8},
{2, 1, 9},
{6, 9, 3},

};
defines two dimensional array of order 3x3 and initializes all its elements.

US03CBCA23 UNIT-II Working With Array, String And Classes

3 VP & RPTP SCIENCE COLLEGE

 The first subscript (size of the row) may be omitted. Hence, he above definition can
be replaced by:

Int a[][3]={ {4, 7, 8},
{2, 1, 9},
{6, 9, 3}

};
 The inner braces can be omitted, permitting the numbers to be written in one

continues sequence as follows:
Int a[][3]={4, 7, 8, 2, 1, 9, 6, 9, 3};

 It has the same effect as the earlier definitions, but it suffers from readability.

2.5 Operations of array

 Example:
#include<iostream.h>
Void main()
{

Int age[5];
Float sum=0;
For(int i=0; i<5; i++)
{

Cout <<“enter person”<<i+1<<” age: ”;
Cin>>age[i];

}
For(i=0;i<5;i++)
{

Sum+=age[i];
}
Cout <<”average age is “<<sum/5;

}

3 Working with string: introduction, declaration, manipulation and array of string

3.1 Introduction of strings :

 Strings are used in programming language for storing and manipulating text,
such as words, names, and sentences.

 It is represented as an array of characters and the end of the string is marked by
the NULL (‘\0’) character. String constants are enclosed in double quotes.

 For instance,
“Hello World”

is a string. A string is stored in memory by using the ASCII codes of the
characters that form the string. The representation of the string hello world in
memory is shown in below.

US03CBCA23 UNIT-II Working With Array, String And Classes

4 VP & RPTP SCIENCE COLLEGE

3.2 Declaration of strings :

 An array of characters representing a string is defined as follow:
Char array-name[size];

 As usual, the size of the array must be an integer value. For instance, the
statement

Char name[50];
defines an array and reserves 50 bytes of memory for storing a set of
characters.

 The length of this string cannot exceed 49 since, one storage location must be
reserved for storing the end of the string marker.

 The program name.cpp defines an array and uses it to store characters.
#include<iostream.h>
void main()
{

char name[50]; //string definition
cout << “enter your name <49-max>: “;
cin>>name;
cout<<”your name is “<<name;

}
RUN
Enter your name <49-max>: abc
Your name is : abc

 In main(), the statement
Cin>>name;

Reads characters and stores them into the variable name. The statement
Cout<<”your name is “<< name;

Outputs the contents of the string variable name.

3.3 Strings Manipulation:

 C++ has several built-I functions such as strlen(), strlwr(), etc., for string
manipulation. To use these functions, the header file string.h must be included
in the programming using the statement

include<string.h>

3.3.1 String Length

 The string function strlen() returns the length of a given string.
 A string constant or an array of characters can be passed as an argument.
 The length of the string excludes the end-of-string character (NULL).
 Syntax : strlen(s1);
 Example :

US03CBCA23 UNIT-II Working With Array, String And Classes

5 VP & RPTP SCIENCE COLLEGE

#include<iostream.h>
#include<string.h>
void main()
{

char s1[25];
cout<<”Enter your name”;
cin>>s1;
cout<<”strlen(s1): “<<strlen(s1) <<endl;

}
3.3.2 String Copy
 The string function strcpy() copies the contents of one string to another.
 It takes two arguments, the first argument is the destination string array and the

second argument is the source string array.
 The source string is copied into the destination string.
 Syntax : strcpy(s1, s2);
 Example :

#include<iostream.h>
#include<string.h>
void main()
{

char s1[25],s2[25];
cout<<”Enter string”;
cin>>s1;
strcpy(s2,s1);
cout<<s2;

}
3.3.3 String Concatenation
 The string function strcat() concatenates two strings resulting in a single string.
 It takes two arguments, which are the destination and source strings.
 The destination and source strings are concatenated and the resultant string is

stored in the destination(first) string.
 Syntax : strcat(s1, s2);
 Example :

#include<iostream.h>
#include<string.h>
void main()
{
char s1[40], s2[25];
cout<<”Enter string s1”;
cin>>s1;
cout<<”Enter string s2”;
cin>>s2;
strcat(s1, s2);
cout<<s1;
}

US03CBCA23 UNIT-II Working With Array, String And Classes

6 VP & RPTP SCIENCE COLLEGE

3.3.4 String Comparison

 The string function strcmp() compares two strings, character by character.
 It accepts two strings as parameters and returns an integer, whose value is

<0 if the first string is less than the second
==0 if both are identical
>0 if the first string is greater than the second.

 Whenever two corresponding characters in the string differ, the string which has
the character with the higher ASCII value is greater.

 Syntax : strcat(s1, s2);
 Example :

#include<iostream.h>
#include<string.h>
void main()
{
char s1[25], s2[25];
cout<<”Enter string s1”; cin>>s1;
cout<<”Enter string s2”; cin>>s2;
int status = strcmp(s1, s2);
cout<< “ strcmp(s1, s2) : “;
if (status == 0) { cout<< s1 << “ is greater than “ << 2; }
else if(status > 0) { cout<< s1 << “ is greater than “ << s2; }
else { cout<< s1 << “ is less than “ <<s2; }
}

3.3.5 String Upper/Lower case

 The string function strlwr() and strupr() convert a string to lower-case and upper-
case respectively and returns the address of the converted string.

 Syntax : strlwr(s1);
 Syntax : strupr(s1);
 Example :

#include<iostream.h>
#include<string.h>
void main()
{

char s1[25], temp[25];
cout<<”Enter a string”;
cin>>s1;
strcpy(temp, s1);
cout<<”strupr(temp): “<<strupr(temp) <<endl;
cout<<”strlwr(temp): “<<strlwr(temp) <<endl;

}

US03CBCA23 UNIT-II Working With Array, String And Classes

7 VP & RPTP SCIENCE COLLEGE

3.4 Array of string

 An array of strings is a two dimensional array of charcters & is defined as
follows:
Char array-name[rwo_size][column_size];
For instance the statement
Char person[10][15];

 Defines an array of string which can store names of 10 persons & each name
can’t exceed 14 characters; 1 character is used to represent the end of string.
The name of the first person accessed by the expression person[0], & the
second person by person[1] & so on.

 For example;
Char city[5][10]={“anand”,”vvn”,”ahmedabad”,”baroda”,”surat”};

4 Classes and objects in c++

4.1 Classes :
 A class is a way to bind the data and its associated functions together. It allows the

data (and functions) to be hidden, if necessary from external use.
 Defining a class means creating a new abstract data type that can be treated like

any other built – in data type.
 A class specification has two parts:

1. Class declaration.
2. Class function definitions.

4.1.1 Class declaration:

 It describes the type and scope of its members.

4.1.2 Class function definitions:

 It describes how the class functions are implemented.
 General form of class declaration:

class class_name
{

private:
variable declarations;
function declarations;

public:
variable declarations;
function declarations;

};

US03CBCA23 UNIT-II Working With Array, String And Classes

8 VP & RPTP SCIENCE COLLEGE

 The keyword class specifies that what follows is an abstract data of type class
name.

 The body of a class is enclosed within braces and terminated by a semicolon.
 The class body contains the declaration of variables and functions. These functions

and variables are collectively called class members.
 They are usually grouped under two sections, namely, private and public. The

keywords private and public are known as visibility labels. These keywords are
followed by a colon.

 The class members that have been declared as private can be accessed only from
within the class.

 The variable declared inside the class are known as data members and the
functions are known as member functions.

 The public members (both functions and data) can be accessed from outside the
class. The binding of data and functions together into a single class type variable is
referred to as encapsulation.

4.2 Creating Objects:

 Once a class has been declared, we can create variables of that type by using the
class name. in C++ the class variables are known as objects. We may declare
more than one object in one statement.

i. e.,
item x, y, z;

Data

Functions

Data

Functions

Private Area

Public Area

Class

No entry to
Private Area

Entry allowed
to Public Area

X

Class name

US03CBCA23 UNIT-II Working With Array, String And Classes

9 VP & RPTP SCIENCE COLLEGE

 The necessary memory space is allocated to an object at this stage. Objects can
also be created when a class is defined by placing their names immediately after
the closing brace, as we do in the case of structures.

 i.e.,
class item
{ ………….

………….
………….

}x, y, z;

4.3 Accessing Class Members:

 The private data of a class can be accessed only through the member functions of
that class. The main() cannot contain statements that access data members.

 Format of calling a member function:

object-name . function-name (actual-arguments);

 A member function can be invoked only by using an object of the same class.

4.4 Defining Member Functions:

 Member functions can be defined in two places.

- Outside the class definition.
- Inside the class definition.

4.4.1 Outside the class definition:

 Member functions that are declared inside a class have to be defined separately
outside the class.

 An important difference between a member function and a normal function is that a
member function incorporates a membership “Identity Label” in the header. This
“Label” tells the compiler which class the function belongs to.

 General form of member function definition is:

return-type class-name :: function-name(argument declaration)
{

Function body

}

US03CBCA23 UNIT-II Working With Array, String And Classes

10 VP & RPTP SCIENCE COLLEGE

 The member functions have some special characteristics as bellow:

- Several different classes can use the same function name. The “membership
label” (class-name) will resolve their scope.

- Member functions can access the private data of the class. A non-member
function cannot do so, but the friend function can access private data.

- A member function can call another member function directly, without using the
dot operator.

4.4.2 Inside the class Definition:

 Another method of defining a member function is to replace the function declaration
by the actual function definition inside the class.

 Example:
class item
{

private:
int number;
float cost;

public:
void getdata(); //Declaration.
//Inline function
void putdata()
{

cout<<“Number :”<<number<<endl;
cout<<“Cost :”<<cost<<endl;

}
};

void item :: getdata()
{

cout<<“\nEnter Number :”;
cin>>number;
cout<<“Enter Cost : ”;
cin>>cost;

}

void main()
{

item i1, i2;

i1.getdata();
i1.putdata();

US03CBCA23 UNIT-II Working With Array, String And Classes

11 VP & RPTP SCIENCE COLLEGE

 When a function is defined inside a class, it is treated as an inline function.
Therefore all the restrictions and limitations that apply to an inline function are also
applicable here.

 Normally, only small functions are defined inside the class definition.

5 Constructors: default, parameterized, copy, overloading and destructor

Constructor:-

 A constructor is a special member function whose task is to initialize the objects of
its class. It is special because its name is the same as the class name.

 The constructor is invoked whenever an object of its associated class is created.
 It is called constructor because it constructs the values of data members of the

class.
 The syntax for defining a constructor is shown below:

 Syntax:

class ClassName
{

public :
ClassName() // This is a constructor.
{

:
:

}
};

 Example:
class test
{

public :
test() // This is a constructor.
{

cout<<”I am constructor” ;
}

};
void main()
{

test t ; // This is call to constructor.
}

 It is possible to define a class without constructor. In such case, compiler calls a
dummy constructor (i.e. which performs no action) when its object is created.

US03CBCA23 UNIT-II Working With Array, String And Classes

12 VP & RPTP SCIENCE COLLEGE

 Characteristics of a constructor:
 A constructor has the following characteristics:

- It has the same name as its class.
- It does not have any return type.
- It is used to initialize data members of a class.
- It is used to allocate memory to data members of a class.
- It is the first member function to be executed automatically when the object of

the class is created.

5.1 Default Constructor:-

 “Constructors without any arguments(or parameters) are known as default
constructor.”

 The syntax for defining a default constructor is shown below:

class ClassName
{

public :
ClassName() // This is a default constructor.
{

:
:

}
};

 Example:
class test
{

public :
test() // This is a default constructor.
{

cout<<”I am default constructor” ;
}

};
void main()
{

test t ; // This is call to default constructor.
}

5.2 Parameterized constructor:-

 “Constructor with arguments are known as parameterized constructor.”
 The syntax for defining a parameterized constructor is shown below:

class ClassName

There is no argument

US03CBCA23 UNIT-II Working With Array, String And Classes

13 VP & RPTP SCIENCE COLLEGE

{
public :

ClassName(int a) // This is a parameterized constructor.
{

:
:

}
};

 Example:
class test
{

public :
test(int a) // This is a parameterized constructor.
{

cout<<”The value of a=”<<a ;
}

};
void main()
{

test t(5) ; // This is call to parameterized constructor.
test t = 4 ; // Another way of calling parameterized constructor.

}
Output:
The value of a=5
The value of a=4

5.3 Constructor Overloading :-

 A class have multiple constructor, and they differ only in total number of arguments
or their data types or both. This is called constructor overloading.

 Example: Write a C++ program to build a class addition, which have two integer
data members (x and y).

#include<iostream.h>
class addition
{

public :
int x, y, sum;

addition() ; // Default constructor
addition (int a) ;
addition (int a , int b) ;

} ;

Here, one or more parameters are allowed

US03CBCA23 UNIT-II Working With Array, String And Classes

14 VP & RPTP SCIENCE COLLEGE

class addition : : addition()
{ x=0;

y=0;
sum = x + y;
cout<<”Sum =”<<sum; }

class addition : : addition(int a)
{ x=a;

y=0;
sum = x + y;
cout<<”Sum =”<<sum; }

class addition : : addition(int a, int b)
{ x=a;

y=b;
sum = x + y;
cout<<”Sum =”<<sum; }

void main()
{ addition a1 ; //This call default constructor, display Sum = 0

addition a2(5) ; //This call constructor with one argument, display Sum = 5
addition a3(5,7); //This call constructor with two argument, display Sum = 12 }

5.4 Copy constructor:-

 “A constructor having a reference to an object of its own class as an argument is
known as copy constructor.”

 The argument of a constructor can be of any type except an object of its own class
as a value parameter.

class test
{

:
test (test t1) ;
:

}
But, an object of a class can be passed as a reference parameter as shown below.

class test
{

:
test (test &t1) ; // Copy constructor.
:

}

Reference to an object of the class test

This is invalid. It is an Error

US03CBCA23 UNIT-II Working With Array, String And Classes

15 VP & RPTP SCIENCE COLLEGE

 Example:

#include<iostream.h>

class test
{

int i;
public:

test(); //default constructor
test(test &x); //copy constructor
void disp();

};
test::test()
{

i=1;
}
test::test(test &x)
{

i=x.i+1;
}
void test:: disp()
{

cout<<i<<endl;
}
void main()
{

clrscr();
test t1; //call default constructor
t1.disp();
test t2(t1); // call copy constructor
t2.disp();
test t3(t2); // call copy constructor again
t3.disp();
getch();

}

5.5 Destructor:-

 “Destructor is a special member function, which is called automatically when object
is destroyed. It has the same name as its class prefix by ~ (Tilde) character.”

 The syntax for defining a destructor is shown below:

US03CBCA23 UNIT-II Working With Array, String And Classes

16 VP & RPTP SCIENCE COLLEGE

class ClassName
{

public :
ClassName() // This is a constructor.
{

:
:

}
~ ClassName() // This is a destructor.
{

:
:

}
};

 A class cannot have more than one destructor. Like constructor, destructors have
no return type. Unlike the constructor, the destructor does not take any arguments.

 Example:
class test
{

public :
test() // This is a constructor.
{

cout<<”I am constructor” ;
}

~test() // This is a destructor.
{

cout<<”I am destructor” ;
}

};
void main()
{

test t ; // This is call to constructor.
Cout<<”\n In main function”;

}
Output:
I am constructor
In main function
I am destructor

US03CBCA23 UNIT-II Working With Array, String And Classes

17 VP & RPTP SCIENCE COLLEGE

5.6 Differentiate between Constructor and Destructor
Constructor Destructor

1. Constructor is a special member
function, which is called
automatically when object is created

1. Constructor is a special member function,
which is called automatically when object
is destroyed

2. Syntax:
Note : Write down syntax here.

2. Syntax:

3. Example:
Note : Write down example here.

3. Example:

4. Arguments can be passed to
constructor.

4. Arguments cannot be passed to
destructor.

5. Constructors cannot be virtual. 5. Destructor can be virtual.
6. It has the same name as its class 6. It has the same name as its class but

prefix by ~(Tilde) character.
7. A class can have more than one

constructor
7. A class cannot have more than one

destructor
8. Constructor can be overloaded. 8. Destructor cannot be overloaded.
9. It is used to allocate the resources

to the object of a class.
9. It is used to release all the resources

allocated to the object of a class.
10. Types of constructor are:

- Default constructor
- Parameterized constructor
- Copy constructor

10. There are no any types of destructor.

6 Access specifiers, implementing and accessing class members

 Each user has different access privileges to the object. A class differentiate
between access privileges by partitioning its contents and associating each one of
them with any one of the following keword:

- Private
- Protected
- public

 These keywords are called access control specifiers. All the members that follow a
keword (upto another keyword) belong to that type.

 If no keyword is specified, then the members are assumed have private privilege.
The following table specifies control of privileges.

Access
Specifier

Accessible to
Own class
member

Derived class
member

Other class
member

Object of a
class

Private Yes No No No

Protected Yes Yes No No

Public Yes Yes Yes Yes

US03CBCA23 UNIT-II Working With Array, String And Classes

18 VP & RPTP SCIENCE COLLEGE

6.1 Private Member :
 The private members of a class have strict access control. Only the member

functions of the same class can access these members.
 The private members of a class are inaccessible outside the class, thus, providing a

mechanism for preventing accidental modifications of the data members.
Class person
{

Private :
// private members
………
Int age ;
Int getage();
………

};
Person p1;
A=p1.age; // can not access private data
P1.getdata(); // can not access private data

 The following example illustrates the situation when all the members of a class are
declared as private:

Class inaccessible
{

Int x ;
Void display();
{

Cout<<”\n data =”<<x;
}

};
Void main()
{

Inaccessible obj1;
Obj1.x=5; // error invalid access
Obj1.display(); // error invalid access

}

 The class having all the members with private access control is of no use; there is
no means available to communicate with the external world. Therefore , classes of
the above type will not contribute anything to the program.

6.2 Protected Member :

 The access control of the protected members is similars to that of private members
and has more significance in inheritance. The member function of the derived class
can access the protected data member.

US03CBCA23 UNIT-II Working With Array, String And Classes

19 VP & RPTP SCIENCE COLLEGE

 Only class member and derived class member can access protected data, other
class member can not access.

Class person
{

Protected : //access specifier
// protected members
………
Int age ;

Int getage();
………
};
Person p1;
A=p1.age; //same as private can not access protected member
P1.getdata(); //same as private can not access protected member

6.3 public members

 The members of class , which are to be visible (accessible) outside the class,
should be declared in public section.

 All data members and functions declared in the public section of the class can be
accessed without any restriction from anywhere in the program, either by function
that belongs to the class or by those external to the class.

 Accessibility control of public members is shown in figure.

Class person
{

Public : //access specifier
// public members
………
Int age ; public data

Int getage(); public function
………
};
Person p1;
A=p1.age; //class access public data
P1.getdata(); // can access public function

US03CBCA23 UNIT-II Working With Array, String And Classes

20 VP & RPTP SCIENCE COLLEGE

7 Working with objects : constant objects, nameless objects, live objects, arrays
of objects

7.1 Constant Object:-
 C++ allows to define constant object of a class.

 Syntax:
className const ObjectName (Arguments) ;

 Constant objects are initialized only by a constructor during object creation. Once
an object is created, no member function of its class can modify its data members.
They can only read the data members. Such a data members are known read only
data members and object is known as read only object or constant object.

//Constant object...
#include<iostream.h>
#include<conio.h>
#include<string.h>
class student
{

public :
int no;
char name[50];

student (int n, char nm[50]);
void print();

};
student :: student(int n, char nm[50])
{

no = n;
strcpy(name,nm);

}
void student :: print()
{

cout<<no<<name;
}
void main()
{

student const s1(1,"XYZ");
clrscr();
s1.no=5; // Error :: Can not modify constant object.
s1.print();
getch();

}

Keyword

Name of an ObjectName of a class

US03CBCA23 UNIT-II Working With Array, String And Classes

21 VP & RPTP SCIENCE COLLEGE

7.2 Nameless Object:-
 C++ supports the creation of unnamed object. It means that in creation of an object,

the name of an object need not mentioned.
 Syntax:

className (Arguments) ;

 In above syntax, the name of object is not mentioned.
- Passing arguments to an object is optional. If there is no argument, a default

constructor is called. If there is argument, corresponding constructor is called.
- The scope of a nameless object is limited only to the statement in which it is

created because nameless objects are immediately destroyed after execution of
a constructor.

- The creation of nameless object is useful in function in function returning an
object.

 Example:

#include<iostream.h>
class test
{

public :
int a;
test ()

};
test :: test ()
{

cout<<”Constructor \n”;
}
void main()
{

test () ; // This statement created as well as destroyed nameless object.
}

7.3 Live object:

 Objects created dynamically with their data members initialized during creation are
known as live object. The new operator is used for creating a live object. The
syntax for creating live object is as follows.

Ptr_to_object = new className (Parameters) ;

Class name Arguments to constructor

US03CBCA23 UNIT-II Working With Array, String And Classes

22 VP & RPTP SCIENCE COLLEGE

 A class whose live object is to be created must have at least one constructor.
#include<iosteam.h>
#include<conio.h>
class student
{

private :
int roll_no;
char *name;

public :
student(int no)
{ roll_no = no;

name = NULL: }
student(int no, char *nm)
{ roll_no = no;

name = new char [strlen(nm)+1] ;
strcpy(name,nm); }

~student()
{ delete name; }

};

void main()
{

student *s1, *s2;
s1 = new student(1); //Live object
s2 = new student(1, “xyz”) ; //Live object

}

 The syntax for destroying live object is the same as that of normal dynamic objects.
delete object_Name ;

 The delete operator is used to release memory.

7.4 Array of object:-

 It is possible to define object variable, which is an array. Such a variable is known
as array of object.

 Consider the following class.
class student
{

public:
int no;
char name[25];
int marks;

void read();
void print();

};

US03CBCA23 UNIT-II Working With Array, String And Classes

23 VP & RPTP SCIENCE COLLEGE

void student :: read()
{

:
}
void student :: print()
{

:
}

 The syntax for defining an array of object is shown below.

class class_Name object_Name [size] ;
or

class_Name object_Name [size];

 In above, class is keyword, class_Name is the name of the class, object_Name is
any valid variable name and size is integer constant value. An array of the above
class can be defined as follows.

class student s[50];
or

student s[50];
 The syntax for accessing its members using an index.

Class_Name [index]. MemberName //for data member
Class_Name [index]. MemberFunction(parameter) //for member function

 The following statement access members of the class.

cin>> s[4].name ; //It reads name of the 5th student.
cin>>s[2].marks ; //It reads marks of the 3rd student.
cout<< s[0].no ; // It prints number of 1st student.
S[2].read() ; //It calls read function of a class.

 Program: Following program reads the number, name and total marks of the n
student and displays them.
#include<iostream.h>
#include<conio.h>

class student
{

private :
int no;
char name[25];
int marks;

public :
void read();
void print();

};

US03CBCA23 UNIT-II Working With Array, String And Classes

24 VP & RPTP SCIENCE COLLEGE

void student :: read()
{

cout<<“Student number…”;
cin<<no;
cout<<“Student name…”;
cin>>name;
cout<<“Student total marks…”;
cin<<marks;

}
void student :: print()
{

cout<<“\n”<< no<<” “<<name<<” “<<marks;
}
void main()
{

student s[50];
int i,n ;

clrscr();
cout<<Enter number of student…”;
cin>>n;
for(i=0 ; i<n ; i++) s[i].read();
cout<<“\n Student Report “;
cout<<“\n --------------------------“;
cout<<“\n No Name Marks”;
cout<<“\n -------------------------“;

for (i=0 ; i<n ; i++) s[i].print();
getch();

}
Input:

Enter number of student… 2
Student number…1
Student name…Anjali
Student marks…50

Student number…2
Student name…Tushar
Student marks…80

Output:
Student Report

No. Name Marks

1 Anjali 50
2 Tushar 80

