
BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 1

Relational Database Design

 Consequences of poor database design

 The process of database normalization

 Functional dependencies

 Lossless joins and dependency preservation

 Dr. E.F.Codd Rules

 Difference between DBMS and RDBMS

 1st Normal Form, 2nd Normal Form, 3rd Normal Form, Boyce-Codd

Normal Form

 Examples of normalization

 E-R modeling (different types of entities, attributes, relationships and

their representation in the E-R diagram)

 Case studies: Library (Book issue and return), Bank (Opening saving

bank account)

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 2

Database:

A database can be defined as a collection of coherent, meaningful data. The phrase

collection of coherent data needs to have a point of reference to be understood.

DBMS:

 The system that would help in managing data in such a database, called Data Base

Management System. DBMS is a system that allows inserting, updating, deleting and processing

of data.

 DBMS V/S RDBMS

DBMS RDBMS

 In DBMS relationship between two

tables or file are maintained

programmatically.

 In RDBMS relationship between two

tables or files can be specified at the

time of table creation.

 DBMS does not support client/server

architecture.

 Most of the RDBMS support

client/server architecture.

 DBMS does not support distributed

database.

 Most of the RDBMS support distributed

database.

 In DBMS there is no security of data.

 IN RDBMS there are multiple levels of

security

 Logging in O/S level

 Command level

 Object level

 Each table is given an extension in

DBMS

 Many tables are grouped in one database

in RDBMS

 DBMS may satisfy less than 7 to 8 rules

of Dr.E.F.Codd

 RDBMS may satisfy more than 7 to 8

rules of Dr.E.F.Codd

 Naming Conventions: Naming Conventions:

1.Field 1.Column, Attributes

2.Record 2.Row, Tuple, Entity

3. File 3.Table, Relation, Entity Class

A Consequence of Bad Design

Consider the following relation scheme pertaining to the information about a student maintained

by a university:

STDINF (Name, Course, Phone_No, Major, Prof, Grade)

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 3

Figure 6.1 shows some tuples of a relation on the relation scheme STDINF (Name, Course,

Phone_No, Major, Prof, and Grade). The functional dependencies among its attributes are

shown in Figure 6.2. The key of the relation is Name Course and the relation has, in addition, the

following functional dependencies {Name --> Phone_No, Name --> Major, Name Course -->

Grade, Course --> Prof}.

Here the attribute Phone_No, which is not in any key of the relation scheme STDINF, is not

functionally dependent on the whole key but only on part of the key, namely, the attribute Name.

Similarly, the attributes Major and Prof, which are not in any key of the relation scheme

STDINF either, are fully functionally dependent on the attributes Name and Course,

respectively. Thus the determinants of these functional dependencies are again not the entire key

but only part of the key of the relation. Only the attribute Grade is fully functionally dependent

on the key Name Course.

Student data represented in relation STDINF

Name Course Phone_No Major Prof Grade

Jones 353 237-4539 Comp Sci Smith A
Nick 329 427-7390 Chemistry Turner B
Jones 328 237-4539 Comp Sci Clark B
Martin 456 388-5183 Physics James A
Dulles 293 371-6259 Decision Cook C
Duke 491 823-7293 Mathemati Lamb B
Duke 356 823-7293 Mathemati Bond in prog
Jones 492 237-4539 Comp Sci Cross in prog
Baxter 379 839-0827 English Broes C

The relation scheme STDINF can lead to several undesirable problems:

 Redundancy: The aim of the database system is to reduce redundancy, meaning that

information is to be stored only once. Storing information several times leads to the waste of

storage space and an increase in the total size of the data stored.

For Example: In the relation of Figure 6.1, the Major and Phone_No of a student-are stored

several times in the database: once for each course that is or was taken by a student.

 Update Anomalies: Multiple copies of the same fact may lead to update anomalies or

inconsistencies when an update is made and only some of the multiple copies are updated.

For Example, a change in the Phone_No of Jones must be made, for consistency, in all tuples

pertaining to the student Jones. If one of the three tuples of Figure 6.2 is not changed to

reflect the new Phone_No of Jones, there will be an inconsistency in the data.

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 4

 Insertion Anomalies: If this is the only relation in the database showing the association

between a faculty member and the course he or she teaches, the fact that a given professor is

teaching a given course cannot be entered in the database unless a student is registered in the

course. Also, if another relation also establishes a relationship between a course and a

professor who teaches that course (for example, the SCHEDULE relation of Figure A), the

information stored in these relations has to be consistent.

 Deletion Anomalies: If the only student registered in a given course discontinues the course,

the information as to which professor is offering the course will be lost if this is the only

relation in the database showing the association between a faculty member and the course she

or he teaches.

If another relation in the database also establishes the relationship between a course and a

professor who teaches that course, the deletion of the last tuple in STDINF for a given course

will not cause the information about the course's teacher to be lost.

Functional dependencies

Functional dependencies are the outcome (result) of the interrelationship among attributes of an

entity represented by a relation or due to the relationship between entities that is also represented

by a relation.

A functional dependency is a relationship between two attributes. Typically between the PK and

other non-key attributes within the table. Thus, if R represents a relation and the set X of

attributes represents the key attribute of R, then for any other set of attribute Y of R, the

functional dependency represent as

X ———–> Y

The left-hand side of the FD is called the determinant, and the right-hand side is the dependent.

If R represents a many-to-one relationship between two entities, say from E1 to E2, and if X

contains attributes that form a key of El and Y contains attributes that contain d key of E2, again

the FD X —> Y will hold.

But if R represents a one-to-one relationship between entity E1 and E2, the FD Y —› X will

hold in addition to The FD X —> Y.

Examples:

SID ———-> Name, Address, Birthdate

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 5

SID determines names and address and birthdays. Given SID, we can determine any of the other

attributes within the table.

Sid, Course ———> DateCompleted

SiD and Course determine date completed. This must also work for a composite PK.

ISBN ———–> Title

ISBN determines title.

Decomposition

All attributes of an original schema (R) must appear in the decomposition (R1, R2):

R = R1 R2

Decompose the relation schema Lending-schema into:

Branch-schema = (branch-name, branch-city,assets)

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

Let R be a relation schema

 A set of relation schemas { R1, R2,…, Rn } is a decomposition of R if

R = R1 U R2 U …..U Rn each Ri is a subset of R (for i = 1,2…,n)

Goal of Decomposition :

• Eliminate redundancy by decomposing a relation into several relations in a higher normal

form.

• It is important to check that a decomposition does not lead to bad design

Problem with Decomposition:

• Given instances of the decomposed relations, we may not be able to reconstruct the

corresponding instance of the original relation – information loss

 Example:

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 6

Lossy decomposition:

• In previous example, additional tuples are obtained along with original tuples

• Although there are more tuples, this leads to less information

• Due to the loss of information, decomposition for previous example is called lossy

decomposition or lossy-join decomposition

Lossless Join Decomposition

In a database, we sometimes decompose tables into sub-tables, as you learned, in order to avoid

repetition of information in the tables (so to avoid redundancy). However, when we decompose a

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 7

table in sub-tables, we don’t want to lose any data. In other words, when we join the sub-tables

later on, we would want to recover our initial table.

A decomposition {R1, R2,…, Rn} of a relation R is called a lossless decomposition for R if the

natural join of R1, R2,…, Rn produces exactly the relation R.

A decomposition is lossless if we can recover:

 R(A, B, C)

 Decompose

 R1(A, B) R2(A, C)

 Recover

 R’(A, B, C)

 Thus, R’ = R

Lossless Decomposition Property

R : relation

F : set of functional dependencies on R

X,Y : decomposition of R

Decomposition is lossles if :

X ∩ Y X, that is: all attributes common to both X and Y functionally determine ALL the

attributes in X OR

X ∩ Y Y, that is: all attributes common to both X and Y functionally determine ALL the

attributes in Y

In other words, if X ∩ Y forms a superkey of either X or Y, the decomposition of R is a lossless

decomposition

Show that decomposition is Lossless Decomposition

• Since branch-name branch-city assets, the augmentation rule for FD implies that:

o branch-name branch-name branch-city assets

• Since Branch-schema ∩ Loan-info-schema = {branch-name}

o Thus, this decomposition is Lossless decomposition

Dependency Preservation

Another desirable property in database design is dependency preservation. So the need for

dependency preservation is as follows:

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 8

 We would like to check easily that updates to the database do not result in illegal

relations being created.

 It would be nice if our design allowed us to check updates without having to compute

natural joins.

 To know whether joins must be computed, we need to determine what functional

dependencies may be tested by checking each relation individually.

A decomposition D = {R1, R2, ..., Rn} of R is dependency-preserving with respect to F if the

union of the projections of F on each Ri in D is equivalent to F; that is

if (F1 F2 … Fn)+ = F +

Note: It is not necessary that all dependencies from the relation R appear in some relation Ri. It

is sufficient that the union of the dependencies on all the relations Ri be equivalent to the

dependencies on R.

Property of Dependency-Preservation

If decomposition is not dependency-preserving, therefore, that dependency is lost in the

decomposition

Example

R (A B C D)

• FD1: A B

• FD2: B C

• FD3: C D

Decomposition:

R1 (A B C) R2 (C D)

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 9

Normalization

Normalization is a process that helps analysts or database designers to design table structures for

an application.

Goal: The focus of normalization is to attempt to reduce redundant table data to the very

minimum.

Normalization is a technique that:

• Decomposes data into two-dimensional tables

• Eliminates any relationships in which table data does fully depend upon the primary key

of a record

• Eliminates any relationship that contains transitive dependencies

Through the normalization process, the collection of data in a single table is replaced, by the

same data being distributed over multiple tables with a specific relationship being setup between

the tables.

When the process of normalization is applied to table data and this data is spread across several

associated (i.e. a specific relationship has been established) tables, it takes a query much longer

to run and retrieve user data from the set of tables.

Hence, often in a commercial application after 100% normalization is carried out across the

master tables often the table structures are de-normalized deliberately to make SQL queries run

faster. This means that in commercial applications there is often a tradeoff between redundant

table data and the speed of query execution.

Need of Normalization OR Why normalization is carried out?

Normalization is carried out for the following reasons:

1. To structure the data between tables so that data maintenance is simplified

2. To allow data retrieval at optimal speed

3. To simplify data maintenance through updates, inserts and deletes

4. To reduce the need to restructure tables as new application requirements arise

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 10

5. To improve the quality of design for an application by rationalization of table data

First Normal Form:

When a table is decomposed into two-dimensional tables with all repeating groups of data

eliminated, the table data is said to be in its first normal form.

The repetitive portion of data belonging to the record is termed as repeating groups.

To understand the application of normalization to table data the following table structure will be

taken as an example:

Field Key Type

Project number - -

Project name - -

Employee number - - 1-n

Employee name - - 1-n

Rate category - - 1-n

Hourly rate - - 1-n

In above table, 1-n indicates that there are many occurrences of this field - it is a repeating group.

Data held in the above table structure:

Project

number

Project name Employe

e

number

Employee

name

Rate

categor

y

Hourly

rate

P001 Using MySQL On Linux E001 Sharanam Shah A 7000

P001 Using MySL On Linux E002 Vaishali Shah B 6500

P001 Using MySQL On Linux E006 Hansel Colaco C 4500

P002 Using Star Office On Linux E001 Sharanam Shah A 7000

P002 Using Star Office On Linux E007 Chhaya Bankar B 4000

In the above data there are a few problems:

• The Project Name in the second record is misspelled. This can be solved by removing

duplicates. Do this using normalization

• Data is repeated and thus occupies more space

A table is in 1st normal form if:

• There are no repeating groups

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 11

• All the key attributes are defined

• All attributes are dependent on a primary key

So far there are no keys, and there are repeating groups. So remove the repeating groups, and

define the primary key.

To convert a table to its First Normal Form:

• The unnormalized data in the first table is the entire table

• A key that will uniquely identify each record should be assigned to the table. This key

has to be unique because it should be capable of identifying any specific row from the

table for extracting information for use. This key is called the table's primary key.

This following table is now in 1st normal form.

Field Key

Project number Primary Key

Project name - -

Employee number Primary Key

Employee name - -

Rate category - -

Hourly rate - -

Second Normal Form

A table is said to be in its second normal form when each record in the table is in the first normal

form and each column in the record is fully dependent on its primary key.

A table is in 2nd normal form if:

• It's in 1st normal form.

• It includes no partial dependencies (where an attribute is dependent on only a part of a

primary key)

The steps to convert a table to its Second Normal Form:

• Find and remove fields that are related to the only part of the key

• Group the removed items in the another table

• Assign the new table with the key i.e. part of a whole composite key

To convert the table into the second normal form remove and place these fields in a separate

table, with the key being that part of the original key they are dependent on.

This leads to the following 3 tables:

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 12

Table: EmpPro

Field Key

Project number Primary Key

Employee number Primary Key

Table: Emp

Field Key

Employee number Primary Key

Employee name - -

Rate category - -

Hourly rate - -

Table: Proj

Field Key

Project number Primary Key

Project name --

Third Normal Form

Table data is said to be in third normal format when all transitive dependencies are removed

from this data.

The table is in 3rd normal form if:

• It’s in 2nd normal form

• It contains no transitive dependencies (where a non-key attribute is dependent on another

non-key attribute).

A general case of transitive dependencies is as follows: A, B, C are three columns in table.

If C is related to B

If B is related to A

Then C is indirectly related to A

This is when transitive dependency exists.

To convert such data to its third normal form remove this transitive dependency by splitting each

relation in two separate relations. This means that data in columns A, B, C must be placed in

three separate tables, which are linked using a foreign, key.

Going through all the fields reveals the following:

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 13

• Employee table is the only one with more than one non-key attribute

• Employee name is not dependent on either Rate category or Hourly rate

• Hourly rate is dependent on Rate category

To convert the table into the third normal form remove and place these fields in a separate table,

with the attribute it was dependent on as key, as follows:

This leads to the following 4 tables:

Table: EmpPro

Field Key

Project number Primary Key

Employee number Primary Key

Table: Emp

Field Key

Employee number Primary Key

Employee name - -

Rate category - -

Table: Rate

Field Key

Rate category - -

Hourly rate - -

Table: Proj

Field Key

Project number Primary Key

Project name --

These tables are all now in their 3rd normal form, and ready to be implemented. There are other

normal forms such as Boyce-Codd normal form, and 4th normal form, but these are very rarely

used for business applications. In most cases, tables that are in their 3rd normal form are already

conforming to these types of table formats anyway.

Boyce-Codd Normal Form

A relation is in BCNF, if and only if, every determinant is a candidate key.

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 14

The difference between 3NF and BCNF is that for a functional dependency A B, 3NF allows

this dependency in a relation if B is a primary-key attribute and A is not a candidate key,

Whereas BCNF insists that for this dependency to remain in a relation, A must be a candidate

key.

Property of BCNF:-

• BCNF requires that all nontrivial dependencies be of the form , where is a super

key

BCNF Decomposition

• Place the two candidate primary keys in separate entities

• Place each of the remaining data items in one of the resulting entities according to its

dependency on the primary key

For Example:

The following table structure will be taken as an example:

Field Key Type

Project number - -

Project name - -

Employee number - - 1-n

Employee name - - 1-n

Rate category - - 1-n

Hourly rate - - 1-n

Table: Emp Table: Proj

Field Key

Employee number Primary Key

Project number --

Project name --

Table: EmpProj

Field Key

Employee number Primary Key

Project number --

Field Key

 Employee number Primary Key

Project number --

Employee name - -

Rate category - -

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 15

Dr E. F Codd rules

There are 12 Codd’s Rules for RDBMS.

 Rule 1: The Information Rule - All data should be presented in table form

 Rule 2: Guaranteed Access Rule - All data should be accessible without ambiguity. This

can be accomplished through a combination of the table name, primary key, and column

name

 Rule 3: Systematic Treatment of Null Values - A field should be allowed to remain empty.

This involves the support of a null value, which is distinct from an empty' string or a number

with a value of zero. Of course, this can't apply to primary keys. In addition, most database

implementations support the concept of a not-null field constraint that prevents null values in

a specific table column

 Rule 4: Dynamic On-Line Catalog based on the Relational Model - A relational database

must provide access to its structure through the same tools that are. used to access the data.

This is usually accomplished by storing the structure definition within special system tables

 Rule 5: Comprehensive Data Sublanguage Rule - The database must support at least one

clearly defined language that includes functionality for data definition, data manipulation,

data integrity, and database transaction control. All commercial relational databases use

forms of standard SQL (i.e. Structured Query Language) as their supported comprehensive

language

 Rule 6: View Updating Rule - Data can be presented in different logical combinations

called views. Each view should support the, same full range of data manipulation that has

direct access to a table, available. In practice, providing update and delete access to logical

views is difficult and is not fully supported by any current database

 Rule 7: High-level Insert, Update, and Delete - Data can be retrieved from a relational

database in sets constructed of data from multiple rows and/or multiple tables. This rule

states that insert, update, and delete operations should be supported for any retrievable set

rather than just for a single row in a single table

 Rule 8: Physical Data Independence - The user is isolated from the physical method of

storing and retrieving information from the database. Changes can be made to the underlying

architecture (hardware, disk storage methods) without affecting how the user accesses it

 Rule 9: Logical Data Independence - How data is viewed should not be changed when the

logical structure (table's structure) of the database changes. This rule is particularly difficult

to satisfy. Most databases rely on strong ties between the data viewed and the actual structure

of the underlying tables

 Rule 10: Integrity Independence - The database language (like SQL) should support

constraints on user input that maintain database integrity. This rule is not fully implemented

by most major vendors. At a minimum, all databases do preserve two constraints through

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 16

SQL. No component of a primary key can have a null value. If a foreign key is defined in one

table, any value in it must exist as a primary key in another table.

 Rule 11: Distribution Independence - A user should be totally unaware of whether or not

the database is distributed (whether parts of the database exist in multiple locations). A

variety of reasons make this rule difficult to implement.

 Rule 12: Non subversion Rule - There should be no way to modify the database structure

other than through the multiple row database language (like SQL). Most databases today

support administrative tools that allow some direct manipulation of the data structure.

Entity-relationship modeling

Entity-Relationship (ER) model, a high-level data model that is useful in developing a

conceptual design for a database. Creation of an ER diagram, which is one of the first steps in

designing a database, helps the designer(s) to understand and to specify the desired components

of the database and the relationships among those components. An ER model is a diagram

containing entities or "items", relationships among them, and attributes of the entities and the

relationships.

ER modeling helps you to analyze data requirements systematically to produce a well-designed

database. So, it is considered a best practice to complete ER modeling before implementing your

database.

Why use E-R Diagrams?

 Helps you to define terms related to entity relationship modeling

 Provide a preview of how all your tables should connect, what fields are going to be on

each table

 Helps to describe entities, attributes, relationships

 ER diagrams are translatable into relational tables which allows you to build databases

quickly

 ER diagrams can be used by database designers as a blueprint for implementing data in

specific software applications

 The database designer gains a better understanding of the information to be contained in

the database with the help of ERP diagram

 ERD is allowed you to communicate with the logical structure of the database to users

Components of the ER Diagram

 Entities

 Attributes

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 17

 Relationships

Entity

An entity is a real-world item or concept that exists on its own. In our example, a particular

student (such as, "Emanuel Vagas"), team, lab section, or experiment is an entity. The set of all

possible values for an entity, such as all possible students, is the entity type. In an ER model, we

diagram an entity type as a rectangle containing the type name, such as student.

An entity type is strong if its existence does not depend on some other entity type. Otherwise,

the entity type is weak. A weak entity is a type of entity which doesn't have its key attribute. It

can be identified uniquely by considering the primary key of another entity. For that, weak entity

sets need to have participation.

Examples of entities:

 Person: Employee, Student, Patient

 Place: Store, Building

 Object: Machine, product, and Car

 Event: Sale, Registration, Renewal

 Concept: Account, Course

In the physics laboratory ER model example, the entity type student is strong because its

existence does not depend on some other entity type. However, the team entity type is weak. The

existence of ‘team’depends on the existence of LabSection, and we call the ‘IN’ identifying

relationship. We draw double lines around the identifying relationship, the team entity type, and

the line connecting the two to indicate the weak entity type.

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 18

Difference between Strong and Weak Entity Set

Strong Entity Set Weak Entity Set

Strong entity set always has a primary key. It does not have enough attributes to build a
primary key.

It is represented by a rectangle symbol. It is represented by a double rectangle
symbol.

It contains a Primary key represented by
the underline symbol.

It contains a Partial Key which is
represented by a dashed underline symbol.

The member of a strong entity set is called
as dominant entity set.

The member of a weak entity set called as a
subordinate entity set.

Primary Key is one of its attributes which
helps to identify its member.

In a weak entity set, it is a combination of
primary key and partial key of the strong
entity set.

In the ER diagram the relationship between

two strong entity set shown by using a
diamond symbol.

The relationship between one strong and a

weak entity set shown by using the double
diamond symbol.

The connecting line of the strong entity set
with the relationship is single.

The line connecting the weak entity set for
identifying relationship is double.

Attribute

Each entity has attributes, or particular properties that describe the entity. For example, student

Emanuel Vagas has properties of his own Student Identification number, name, and grade. A

particular value of an attribute, such as 93 for the grade, is a value of the attribute. Most of the

data in a database consists of values of attributes. The set of all possible values of an attribute,

such as integers from 0 to 100 for a grade, is the attribute domain. In an ER model, an attribute

name appears in an oval that has a line to the corresponding entity box.

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 19

Sometimes the value of an attribute is unknown or missing, and sometimes a value is not

applicable. In such cases, the attribute can have the special value of null. For example, until the

professor grades a laboratory assignment, the team grade is missing or null. For a student who is

auditing a course but participating as a team member, it is not applicable for that student to have

an individual grade; the student's grade can have the value of null.

A derived attribute is one which can be derived from the values of other related attributes and

entities. This type of attribute does not include in the physical database. However, their values

are derived from other attributes present in the database. For example, age should not be stored

directly. Instead, it should be derived from the DOB of that employee.

Multivalued attributes can have more than one value. For example, a student can have more

than one mobile number, email address, etc.

An attribute can be simple or composite. A simple attribute, such as grade, is one component

that is atomic. If we consider the name in two parts, last name and first name, then the name

attribute is a composite. A composite attribute, such as "Emanuel Vagas", has multiple

components, such as "Emanuel" and "Vagas"; and each component is atomic or composite. We

illustrate this composite nature in the ER model by branching off the component attributes

Relationships

A relationship type is a set of associations among entities. For example, the student entity type

is related to the team entity type because each student is a member of a team. In this case,

a relationship or relationship instance is an ordered pair of a specific student and the student's

particular physics team, such as (Emanuel Vagas, Phys201F2005A04), where

Phys201F2005A04 is Emanuel's team number.

We use a diamond to illustrate the relationship type in an ER diagram. We arrange the diagram

so that the relationship reads from left to right, "a student is a member of a team." Alternatively,

we can arrange the components from top to bottom.

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 20

ER diagram notation for relationship type, Member Of

Types:

 One-to-One Relationship

 One-to-Many or Many-to-One Relationship

 Many-to-Many Relationship

One-to-one Relationship

Such a relationship exists when each record of one table is related to only one record of the other

table.

For example, If there are two entities ‘Person’ (Id, Name, Age, Address) and

‘Passport’(Passport_id, Passport_no). So, each person can have only one passport and each

passport belongs to only one person.

Such a relationship is not very common. However, such a relationship is used for security

purposes. In the above example, we can easily store the passport id in the ‘Person’ table only.

But, we make another table for the ‘Passport’ because Passport number may be sensitive data

and it should be hidden from certain users. So, by making a separate table we provide extra

security that only certain database users can see it.

One-to-Many or Many-to-One Relationship

Such a relationship exists when each record of one table can be related to one or more than one

record of the other table. This relationship is the most common relationship found. A one-to-

many relationship can also be said as a many-to-one relationship depending upon the way we

view it.

For example, If there are two entity type ‘Customer’ and ‘Account’ then each ‘Customer’ can

have more than one ‘Account’ but each ‘Account’ is held by only one ‘Customer’. In this

example, we can say that each Customer is associated with many Accounts. So, it is a one-to-

many relationship. But, if we see it the other way i.e. many Account is associated with one

Customer then we can say that it is a many-to-one relationship.

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 21

Many-to-Many Relationship

Such a relationship exists when each record of the first table can be related to one or more than

one record of the second table and a single record of the second table can be related to one or

more than one record of the first table. A many-to-many relationship can be seen as a two one-to-

many relationship which is linked by a 'linking table' or 'associate table'. The linking table links

two tables by having fields which are the primary key of the other two tables. We can understand

this with the following example.

Example: If there are two entities type ‘Customer’ and ‘Product’ then each customer can buy

more than one product and a product can be bought by many different customers.

Entity-relationship diagram
In order to begin constructing the basic model, the modeler must analyze the information

gathered during the requirement analysis for the purpose of:

• classifying data objects as either entities or attributes,

• identifying and defining relationships between entities,

• naming and defining identified entities, attributes, and relationships,

• Documenting this information in the data document.

• Finally draw its ER diagram.

To accomplish these goals the modeler must analyze narratives from users, notes from meeting,

policy and procedure documents, and, if lucky, design documents from the current information

system.

Also some more points to be followed while drawing E-R diagram is as follows:-

• Every entity must be represented in the model

• Every entity must have at least one relationship

• Every entity must be a unique identifier.

• As far as possible, many to many relationship must be avoided.

E-R diagrams constructs

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 22

In E-R diagrams, entity types are represented by squares. See the table below. Relationship types

are shown in diamond shaped boxes attached to the participating entity types with straight lines.

Attributes are shown in ovals, and each attribute is attached to its entity type or relationship type

by a straight line. Multi valued attributes are shown in double ovals. Key attributes have their

names underlined. Derived attributes are shown in dotted ovals.

Weak entity types are distinguished by being placed in double rectangles and by having their

identifying relationship placed in double diamonds.

Attaching a 1, M, or N on each participating edge specifies cardinality ratio of each binary

relationship type. The participation constraint is specified by a single line for partial participation

and by double lines for total participation. The participation constraints specify whether the

existence of an entity depends on its being related to another entity via the relationship type. If

every entity of an entity set is related to some other entity set via a relationship type, then the

participation of the first entity type is total. If only few member of an entity type is related to

some entity type via a relationship type, the participation is partial.

ENTITY TYPE

WEAK ENTITY TYPE

RELATIONSHIP TYPE

ATTRIBUTE

KEY ATTRIBUTE

MULTIVALUED

ATTRIBUTE

DERIVED ATTRIBUTE

TOTAL PARTICIPATION

OF E2 IN R

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 23

Converting an attribute association to a relationship

Shown in above figure In this case, the instances of the entity from the set DEPENDENTS are

distinguishable only by their relationship with an instance of an entity from the entity set

EMPLOYEE. The relationship set DEDUCTIONS is an example of an identifying relationship

and the entity set DEPENDENTS is an example of a weak entity.

Instances of weak entity sets associated with the same instance of the strong entity must be

distinguishable from each other by a subset of the attributes of the weak entity (the subset may

be the entire weak entity). This subset of attributes is called the discriminator of the weak entity

set.

The primary key of a weak entity set is thus formed by using the primary key of the strong entity

set to which it is related, along with the discriminator of the weak entity.

A Binary relationship between different entity sets:

Cardinality Ratio 1:N FOR

E1:E2 IN R

Structural

Constraint(Min,Max) On

Participation Of E In R

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 24

Fig(1)Binary Relationship Between two distinct entity sets

Fig (2) Relationship Between same entity sets

Fig (3) Ternary Relationship Between Three Entities Sets.

BCA Sem-3 Unit 1 US03CBCA21

Payal Sheth Page 25

	Dr E. F Codd rules
	There are 12 Codd’s Rules for RDBMS.
	 Rule 1: The Information Rule - All data should be presented in table form
	 Rule 2: Guaranteed Access Rule - All data should be accessible without ambiguity. This can be accomplished through a cmination of the table name, primary key, and column name
	 Rule 3: Systematic Treatment of Null Values - A field should be allowed to remain empty. This involves the support of ull value, which is distinct from an empty' string or a number with a value of zero. Of course, this can't apply to primary keys. In addition, most database implementations support the concept of a not-null field constraint that prevents null values in a specific table column
	 Rule 4: Dynamic On-Line Catalog based on the Relational Model - A relational database must provide access to its strucue through the same tools that are. used to access the data. This is usually accomplished by storing the structure definition within special system tables
	 Rule 5: Comprehensive Data Sublanguage Rule - The database must support at least one clearly defined language that incues functionality for data definition, data manipulation, data integrity, and database transaction control. All commercial relational databases use forms of standard SQL (i.e. Structured Query Language) as their supported comprehensive language
	 Rule 6: View Updating Rule - Data can be presented in different logical combinations called views. Each view should suprt the, same full range of data manipulation that has direct access to a table, available. In practice, providing update and delete access to logical views is difficult and is not fully supported by any current database
	 Rule 7: High-level Insert, Update, and Delete - Data can be retrieved from a relational database in sets constructed o ata from multiple rows and/or multiple tables. This rule states that insert, update, and delete operations should be supported for any retrievable set rather than just for a single row in a single table
	 Rule 8: Physical Data Independence - The user is isolated from the physical method of storing and retrieving informatinfrom the database. Changes can be made to the underlying architecture (hardware, disk storage methods) without affecting how the user accesses it
	 Rule 9: Logical Data Independence - How data is viewed should not be changed when the logical structure (table's strucue) of the database changes. This rule is particularly difficult to satisfy. Most databases rely on strong ties between the data viewed and the actual structure of the underlying tables
	 Rule 10: Integrity Independence - The database language (like SQL) should support constraints on user input that mainti database integrity. This rule is not fully implemented by most major vendors. At a minimum, all databases do preserve two constraints through SQL. No component of a primary key can have a null value. If a foreign key is defined in one table, any value in it must exist as a primary key in another table.
	 Rule 11: Distribution Independence - A user should be totally unaware of whether or not the database is distributed (weher parts of the database exist in multiple locations). A variety of reasons make this rule difficult to implement.
	 Rule 12: Non subversion Rule - There should be no way to modify the database structure other than through the multiplerw database language (like SQL). Most databases today support administrative tools that allow some direct manipulation of the data structure.
	Entity-relationship modeling
	Types:
	 One-to-One Relationship
	 One-to-Many or Many-to-One Relationship
	 Many-to-Many Relationship
	One-to-one Relationship
	Such a relationship exists when each record of one table is related to only one record of the other table.
	For example, If there are two entities ‘Person’ (Id, Name, Age, Address) and ‘Passport’(Passport_id, Passport_no). So, ech person can have only one passport and each passport belongs to only one person.
	Such a relationship is not very common. However, such a relationship is used for security purposes. In the above example we can easily store the passport id in the ‘Person’ table only. But, we make another table for the ‘Passport’ because Passport number may be sensitive data and it should be hidden from certain users. So, by making a separate table we provide extra security that only certain database users can see it.
	One-to-Many or Many-to-One Relationship
	Such a relationship exists when each record of one table can be related to one or more than one record of the other tabl. This relationship is the most common relationship found. A one-to-many relationship can also be said as a many-to-one relationship depending upon the way we view it.
	For example, If there are two entity type ‘Customer’ and ‘Account’ then each ‘Customer’ can have more than one ‘Account’but each ‘Account’ is held by only one ‘Customer’. In this example, we can say that each Customer is associated with many Accounts. So, it is a one-to-many relationship. But, if we see it the other way i.e. many Account is associated with one Customer then we can say that it is a many-to-one relationship.
	Many-to-Many Relationship
	Such a relationship exists when each record of the first table can be related to one or more than one record of the secod table and a single record of the second table can be related to one or more than one record of the first table. A many-to-many relationship can be seen as a two one-to-many relationship which is linked by a 'linking table' or 'associate table'. The linking table links two tables by having fields which are the primary key of the other two tables. We can understand this with the following example.
	Example: If there are two entities type ‘Customer’ and ‘Product’ then each customer can buy more than one product and a roduct can be bought by many different customers.
	Entity-relationship diagram
	In order to begin constructing the basic model, the modeler must analyze the information gathered during the requirementanalysis for the purpose of:
	• classifying data objects as either entities or attributes,
	• identifying and defining relationships between entities,
	• naming and defining identified entities, attributes, and relationships,
	• Documenting this information in the data document.
	• Finally draw its ER diagram.
	To accomplish these goals the modeler must analyze narratives from users, notes from meeting, policy and procedure documnts, and, if lucky, design documents from the current information system.
	Also some more points to be followed while drawing E-R diagram is as follows:-
	• Every entity must be represented in the model
	• Every entity must have at least one relationship
	• Every entity must be a unique identifier.
	• As far as possible, many to many relationship must be avoided.
	E-R diagrams constructs
	In E-R diagrams, entity types are represented by squares. See the table below. Relationship types are shown in diamond saped boxes attached to the participating entity types with straight lines. Attributes are shown in ovals, and each attribute is attached to its entity type or relationship type by a straight line. Multi valued attributes are shown in double ovals. Key attributes have their names underlined. Derived attributes are shown in dotted ovals.
	Weak entity types are distinguished by being placed in double rectangles and by having their identifying relationship plced in double diamonds.
	Attaching a 1, M, or N on each participating edge specifies cardinality ratio of each binary relationship type. The partcipation constraint is specified by a single line for partial participation and by double lines for total participation. The participation constraints specify whether the existence of an entity depends on its being related to another entity via the relationship type. If every entity of an entity set is related to some other entity set via a relationship type, then the participation of the first entity type is total. If only few member of an entity type is related to some entity type via a relationship type, the participation is partial.
	Converting an attribute association to a relationship
	A Binary relationship between different entity sets:
	Fig(1)Binary Relationship Between two distinct entity sets
	Fig (2) Relationship Between same entity sets
	Fig (3) Ternary Relationship Between Three Entities Sets.
	Word Bookmarks
	strong
	Null
	1

