Crystal Field Theory-II

By Dr. Vipul B. Kataria

Introduction

- Everything in the world tries to remain in the stable form, and for that it adapts to some kind of geometry.
- > The Jahn Teller effect is based upon same kind of phenomenon.
- The Jahn Teller effect observed due to asymmetrical distribution of electron density in the orbitals.
- > The electrons density is present over the axis in the orbital.

- If the electron density is maximum over z axis than ligands over the z axis will have more attraction hence more repulsion results into large z axis, and the phenomenon is referred as Z OUT.
- If the electron density is maximum over x and y axis than ligands over the x and y axis will have more attraction hence more repulsion results into large x and y axis, and the phenomenon is referred as Z IN.
- Jahn Teller effect is not observed in half filled or fully filled electronic configuration (here consider t_{2g} and e_g as separate orbitals).

- Definition: A spontaneous distortion of geometry for non-linear molecules in electronically asymmetric system which results when levels are split to reduce the energy of the overall system.
- The Jahn Teller effect can be strong or weak according to electron from the different orbitals participating in occurrence of distortion.

> Jahn Teller effect in octahedral complexes.

Z in or out JTD Strong field No. of Electrons Weak Field JTD Z in or out

Z in	W	$t_{2g}^{1} e_{g}^{0}$	d^1	$t_{2g}^{1} e_{g}^{0}$	W	Z out
Z out	W	$t_{2g}^{2} e_{g}^{0}$	d^2	$t_{2g}^{2} e_{g}^{0}$	W	Z out
		$t_{2g}^{3} e_{g}^{0}$	d^3	$t_{2g}^{3} e_{g}^{0}$		
Z in	W	$t_{2g}^{4} e_{g}^{0}$	d^4	$t_{2g}^{3} e_{g}^{1}$	S	Z out
Z out		$t_{2g}^{5} e_{g}^{0}$	d^5	$t_{2g}^{3} e_{g}^{2}$		
		$t_{2g}^{6} e_{g}^{0}$	d^6	$t_{2g}^{4} e_{g}^{2}$	W	Z in
Z out	S	$t_{2g}^{6} e_{g}^{1}$	d^7	$t_{2g}^{5} e_{g}^{2}$	W	Z out
		$t_{2g}^{6} e_{g}^{2}$	d^8	$t_{2g}^{6} e_{g}^{2}$		
Z out	S	$t_{2g}^{6} e_{g}^{3}$	d^9	$t_{2g}^{6} e_{g}^{3}$	S	Z out
		$t_{2g}^{6} e_{g}^{4}$	d^{10}	$t_{2g}^{6} e_{g}^{4}$		

> Jahn Teller effect in tetrahedral complexes.

No. of Electrons	Weak Field	JTD	Z in or out
d ¹	$e^{1}t_{2}^{0}$	W	Z out
d^2	$e^{2}t_{2}^{0}$		X 0
d ³	$e^{2}t_{2}^{1}$	S	Z in
d^4	$e^{2}t_{2}^{2}$	S	Z out
d ⁵	$e^{2}t_{2}^{3}$		
d ⁶	$e^{3}t_{2}^{3}$	W	Z out
d ⁷	$e^4 t_2^3$		
d ⁸	$e^{4}t_{2}^{4}$	S	Z in
d ⁹	$e^4 t_2^5$	S	Z out
d ¹⁰	$e^4 t_2^6$		

5

Tetragonal complexes or Jahn Teller effect

- The main difference between tetrahedral and tetragonal complex is that in tetrahedral complexes the angle between two ligands is 109° 28'. In tetragonal complex the angle between two ligands is any other than 109° 28'.
- The Jahn Teller effect owes to asymmetric electron configuration within the orbital which causes higher energy for complex and the complex tries to distort to maintain stability.
- \triangleright e_g orbitals are equally degenerated while t_{2g} orbitals are triply degenerated.
- t_{2g} orbitals have no role in octahedral complex formation hence it does not produce any Jahn Teller effect as far as tetragonal structure is concerned.
- > In octahedral complexes, the six ligands join with the six lobes of e_g orbitals.
- > eg orbital is consist of two orbitals $(d_z^2 \text{ and } d_{x^2-y}^2)$.

 \succ d_z² orbital has two lobes and d_x²-y² has four lobes, to which the six ligands join.

- If both the eg orbitals are filled symmetrically or remain empty than there will not be any Jahn Teller effect and regular octahedral structure forms.
- If the eg orbital filled asymmetrically than the octahedral structure distorts to form tetragonal structure is formed.

Asymmetric arrangement of electron in eg orbitals

- > If both the $e_g (d_z^2 \text{ and } d_x^2 y^2)$ orbitals are filled with equal number of electrons or remain empty than it will be symmetric arrangement.
- If both the eg (dz² and dx²-y²) orbitals are filled with different number of electrons than it will be asymmetric arrangement that is responsible for Jahn Teller effect.

- As shown above, in d4, d7, and d9 systems, eg orbitals are asymmetric in rest of the cases eg orbitals filled symmetrically.
- > $d_x^2 d_x^2$ orbital has four lobes to which four ligands attach whilst d_z^2 orbital has two lobes to which two ligands attach.

- Now if the electron density remains higher on x and y axis than $d_{x}^{2} \cdot y^{2}$ will have more attraction towards central metal ion (in case of d⁴ and d⁷) and hence will get more repulsion that results into increased distance from central metal ion compare to z axis (Z in).
- > If the electron density is higher on z axis than d_z^2 will have more attraction towards central metal ion and hence will get more repulsion that results into increased distance from central metal ion compare to x and y axis (Z out).
- In case of Z in, where two bonds on z axis become long and four bonds on x and y axis become short, it results into distortion and octahedral structures distorts to tetragonal structure. Such tetragonal structure is known as compressed tetragonal structure.
- In case of Z out, where two bonds on z axis become short and four bonds on x and y axis become long. It results into distortion and octahedral structure distorts to elongated tetragonal structure.
- > The distortion occurs to get the maximum stability.

Splitting of d orbitals

- > Due to ligand field effect in octahedral complexes, orbitals splits in to e_g and t_{2g} among which energy of t_{2g} orbital decreased and energy of e_g orbitals increases.
- > If e_g orbital filled asymmetrically than further splitting occurs to achieve stability. Energy of $d_x^2 - y^2$ orbital will increase as it attaches four ligands and energy of d_z^2 will decrease as it attaches two ligands.

Splitting of d orbitals in square planner complexes

In respect of octahedral field, ligand with its negative charge attacks positively charged central metal ion which produces ligand field effect. As a result of this degeneracy of d orbitals of metal ion loses its degeneracy. It causes splitting of d orbital in two groups.

(i)
$$e_g \text{ group: } (d_x^2 - y^2 \text{ and } d_z^2)$$
 (ii) $t_{2g} \text{ group: } (d_{xy}, d_{yz}, \text{ and } d_{xz})$

- With reference to octahedral field e_g orbitals $(d_x^2 y^2)$ and d_z^2 become excited and energy will be higher while t_{2g} orbitals $(d_{xy}, d_{yz}, and d_{xz})$ will be stable with lower energy.
- In a system having eight electrons (d8), in presence of weak ligand field or strong ligand field, t_{2g} orbital has six electrons while e_g orbital has two electrons.
- Now, d_z^2 orbital has two lobes hence there will be little repulsion for one electron as compare to $d_x^2 \frac{2}{y}^2$ as it has four lobes.
- ➤ In presence of strong ligand field, energy of d_z^2 will decrease and energy of $d_x^2 y^2$ will increase in same amount to gain stability.
- When energy of $d_x^2 y^2$ increases the electron come down to d_z^2 and four ligands can attach easily to it while d_z^2 will be repelled the ligands attaching to it due to presence of two electrons.
- It causes exclusion of two ligands to form geometry and square planner structure will form in place of octahedral.

Splitting of ground state terms

- Spectral terms are very useful in understanding the spectra of transition elements and complexes.
- > Term symbols obtained by 1-l coupling are designated by S, P, D, F....
- In ground state, s orbitals show one, p orbitals show three, d orbital show five and f orbital show seven degenerated layers.
- > In case of ground state terms, S term symbol shows one, P term shows three, D
- Ligand field does not affect s & p orbital hence they will not split.
- In presence of ligand field, d orbital splits into t_{2g} and e_g whilst f orbital splits into a_{2g}, t_{2g} and t_{1g}.
- > D term splits into T_{2g} and E_g whilst F term spits into A_{2g} , T_{2g} , and T_{1g} .
- ➤ A, T and E are Mulliken symbols.
- d orbitals of d¹ and d² systems and their spectral terms ²D and ³F respectively split in octahedral field as below.

- > In tetrahedral field the above splitting got reversed.
- Spin multiplicity (2s + 1) is obtained by S-S coupling and designated as super script on the left side of term symbol.
- > Splitting and order of energy of spectral terms are shown in following table.

Term	Splitting Order of energy of terr		gy of term
		Octahedral field	Tetrahedral field
S	A _{1g} (one)	A _{1g}	A ₁
Р	T _{1g} (Three)	T_{1g}	T_1
D	T_{2g} (Three) + E_g (Two)	$T_{2g} < E_g$	$E < T_2$
F	A_{2g} (One) + T_{2g} (Three) + T_{1g} (three)	$T_{1g} < T_{2g} < A_{2g}$	$A_2 < T_2 < T_1$

 \succ E_g and T_{2g} terms are again splits due to Jahn-Teller effect.

Term	Splitting	Order of energy of term		
		Octahedral field	Tetrahedral field	
Eg	$A_{1g} \left(\text{one} \right) + B_{1g}$	$T_{2g} < E_g$	$E_g < T_{2g}$	
T _{2g}	E_{g} (two) + B_{2g}	$E_g < B_{2g} < A_{1g} < B_{1g}$	$B_{1g} < A_{1g} < B_{2g} < E_g$	

Hole Formalism

In dn and d10-n system of complexes, in presence of same ligand field splitting of Eg and T2g spectral terms will be of reverse of each other. The phenomenon is known as Hole-Formalism.

Spherical charge symmetry of d orbitals

> In d^0 , d^5 , and d^{10} systems electrons arrange symmetrically and such d orbitals are termed as spherical charge symmetric structures.

Spherical charge asymmetric structures of d orbitals

Apart from above mentioned systems, all the d orbital electronic structures have different electronic distribution and are known as charge asymmetric structures.

Charge asymmetric structures and Hole formalitic pair

- In dⁿ and d⁵⁺ⁿ electrons are more than spherical charge symmetric structures so they are known as excess electron systems.
- ➤ In d¹⁰⁻ⁿ and d⁵⁻ⁿ electrons are less than spherical charge symmetric structures and known as less electron systems or positive hole or positron system.
- For example: d¹ system one electron is more than charge symmetric structure while in d⁹ system one electron is less than charge symmetric structure, that make one positive hole or one positron system.
- Such pair is known as Hole formalitic pairs.
- > The formalistic pairs are depicted below.

Hole	Formalitic Pair	Spectral term
d ⁿ	d ¹⁰⁻ⁿ	×
d ¹	d ⁹	² D Doublet D
d^2	d ⁸	³ F Triplet F
d^3	d ⁷	⁴ F Quartet F
d^4	d ⁶	⁵ D Quintet

Hole formalism and splitting of spectral term

- dⁿ and d⁵⁺ⁿ are excess electron system and in complex formation ligands are attached with metal ion by repulsion forces.
- > While in d^{10-n} ligands attach with metal ion by attraction force.
- Thus the d orbital (eg or t2g) of dⁿ system with which ligands are attached their energy increases due to repulsion while in d¹⁰⁻ⁿ system energy decreases due to attraction forces.
- Thus by attachment of ligands the spectral terms of dⁿ system show increase in energy, energy of same d orbital spectral term will decrease in d¹⁰⁻ⁿ system.
- Thus in same ligand field splitting of spectral terms of dⁿ and d¹⁰⁻ⁿ will be reverse, such pair is known as formalitic pair. It has same spectral term with reverse splitting.

Example

- Spectral term of d¹ and d⁹ case is ²D, in d¹ system in octahedral field energy of T_{2g} decreases while energy of E_g increases.
- > In d9 system energy of T_{2g} increases and energy of E_g decreases.
- > For tetrahedral field, in d¹ system energy of E_g decreases and energy of T_{2g} increases.

- > g is not used in tetrahedral field.
- It can be understood that splitting of dⁿ spectral term in octahedral field and splitting of d¹⁰⁻ⁿ in tetrahedral field is same.

> Similarly, d^2 and d^8 has spectral term is F. F term splits as below.

Orgel Diagram

- The spectral terms of various inorganic complexes split in specific manner that can be represented by various diagrams.
- > Tanabe-Sugano diagrams are of same kind but difficult to understand and interpret.
- The splitting of spectral terms is important only in weak field and orgel diagram represents same.
- > They are easy to understand and interpret.

Splitting of spectral terms and orgel diagrams

- In excess electron systems (dⁿ and d⁵⁺ⁿ), ligand attaches to d orbitals by repulsion forces.
- In less electron or positron systems (d¹⁰⁻ⁿ), ligand attaches to d orbitals by attraction forces.
- So, in any field, spectral term for dⁿ and d¹⁰⁻ⁿ will be same but splitting will be of reverse.

Example

- \succ d¹ and d⁹ has spectral term ²D.
- In octahedral field for d¹, splitting of ²D will be in Eg and T2g. energy of Eg will increase and energy of T2g will decrease.
- > In octahedral field for d^9 , energy of T2g will increase and energy of Eg will decrease.
- In tetrahedral field for d¹, the energy of T2g will increase and energy of Eg will decrease.
- In tetrahedral field for d⁹, the energy of Eg will increase and energy of T2g will decrease.
- > In same way, spectral term for d^2 and d^8 is 3F.
- > In octahedral field for d^2 , the splitting and order of energy will be T1g < T2g < A2g.
- > In octahedral field for d^8 , the splitting and order of energy will be A2g < T2g < T1g.
- There is no effect of ligand field on S and P term as S is spherical and P has all the degenerated orbitals.
- The splitting of dⁿ and d¹⁰⁻ⁿ spectral term is of reverse in same field. However it is same in different field.

- Orgel diagrams are helpful to understand the spectra of complexes in weak ligand field.
- > Splitting energy of d orbitals can be explained.

Laporte Selection rules

(A) Orbital Selection rule

- The transition of electron is only allowed if the angular momentum changes by ±1.
 Change in angular momentum Δl = ±1.
- ▶ Orbital allowed transition: If the change in angular momentum is ±1 than the transition is called orbital allowed transitions. For example, $2s^2 \rightarrow 2p^1$ is orbital allowed as one electron moves from s orbital to p orbital and the change in angular momentum is 1.
- → Orbital forbidden transition: if the change in angular momentum is not ±1 then the transition is orbital forbidden transitions. In transition element series d → d transition occurs in which $\Delta l = 0$ hence such transitions are orbital forbidden.
- In orbital allowed transitions the value of molar absorption co-efficient (ε) is very high and due to this sharp band is observed in uv spectroscopy.

In orbital forbidden transitions, the value of molar absorption co-efficient (ε) is very low and due to this weak and broad band is observed in uv spectroscopy.

(B) Spin Selection rule

- > The spin of electron should not be changed in electron transitions. Hence $\Delta S = 0$.
- > The spin multiplicity should be same in ground and excited states.
- > In other words, no. of unpaired electron should be same in ground and excited states.
- Spin allowed transition: If there is no change in spin ($\Delta S = 0$) then such transitions are spin allowed transitions.

Spin forbidden transition: if the $\Delta S = 0$ in electron transition, then such transitions are spin forbidden transitions.

(C) Symmetry Selection rule

- ➢ If symmetry of ground state and excited state should be change during electron transition. In other words, the symmetry should be different in ground and excited states.
- > For example: transition like $g \rightarrow ug$ and $ug \rightarrow g$ are symmetry allowed transitions.
- If symmetry does not change during transition then such transitions are symmetry forbidden transitions.

If above three rules are obeyed during electron transition then the value for molar absorption co-efficient (ϵ) is very high and due to this sharp band is observed in uv spectroscopy. Usually such substances are dark and attractive.

Reasons for forbidden transitions

- ➢ Forbidden transitions are very common.
- > Spin forbidden and orbital forbidden transitions occur due to L-S coupling.
- I values for ground state and excited states change due to L-S coupling hence orbital forbidden transitions occur.
- Orbital hybridization causes change in symmetry of the orbital (ug converts to g and g coverts to ug) hence symmetry forbidden transitions occur.
- Vibrational levels (V) and rotational levels (J) involves in transitional energy levels due to higher amount energy that causes symmetry changes hence forbidden transitions occur.

Sr.	Type of transition	Molar absorption	Example
No.		coefficient	
1	Spin allowed	10,000	$\left[\mathrm{Ti}(\mathrm{Cl})_{6}\right]^{2}$
2	Spin allowed and orbital partially	500	$[CoBr_4]^{2-}$
	allowed	V	and
			$\left[\text{CoCl}_4\right]^{2-}$
3	spin allowed and orbital forbidden	8 to 10	$[Ti(H_2O)_6]^{3+}$
			and
			$\left[V(H_2O)_6\right]^{3+}$
4	Orbital partially allowed and spin	4	$[MnBr_4]^{2-}$
	forbidden		
5	Spin forbidden and orbital forbidden	0.02	$\left[\mathrm{Mn}(\mathrm{H}_{2}\mathrm{O})_{6}\right]^{2+}$

> A weak band observed in uv spectroscopy due to forbidden transitions.

Absorption spectra for transition elements

- The metal salt and complexes are dissolved in appropriate solvent and radiation is passed through.
- Electron transition occurs due to higher amount of energy and accordingly absorption spectra are obtained. The wavelength range is 200 nm to 2000 nm.
- The graph of molar absorption or molar co-efficient against wave number or wave length is plotted, and absorption spectrum can be explained.

> Molar absorption co-efficient is also known as Extinction co-efficient.

$$\epsilon = \frac{A}{c.\,l}$$

- > Where, c = concentration of solution or molarity, and l = length of cell.
- > The intensity of absorption band depends upon value of molar absorption co-efficient.

Origin

- Crystal field theory, molecular orbital theory and ligand field theory are the useful means to explain absorption spectra of transition elements.
- > In transition elements, d orbitals are degenerated in ground state.
- However in excited state, degeneracy is destroyed and d orbital splits into two groups (t_{2g} and e_g).
- In octahedral complexes, energy of t2g is lower whilst in tetrahedral complexes energy of eg is lower.
- Now in presence of radiation, electron transition occurs from lower energy to higher energy (t2g → eg or eg → t2g).
- > Due to such transitions, $d \rightarrow d$ transition absorption spectra are obtained.

Intensity of absorption band

The absorption bands for transition metal elements are weak, broad and asymmetric due to following reasons.

- > d → d transition are orbital forbidden as $\Delta l = 0$.
- > d → d transition requires higher amount of energy so some vibration and rotational energy levels are included.
- > d orbital is symmetric so the transition will be symmetry forbidden.
- Due to Jahn-Teller effect, t2g and eg orbitals split again hence higher energy levels are produced. So, 2 or 3 maxima are observed and the spectrum gets asymmetric.
- > The value for molar absorption co-efficient is very low (1 to 50 cm⁻¹).
- Certain transition metal ions show spectrum with higher intensity due to several other electron transitions.

(a) $\pi \rightarrow \pi^*$ transition

> The non-bonding d orbital electrons of transition metal transits to π^* anti-bonding bonds of ligands.

- > So, it does not fall into category of $d \rightarrow d$ or $g \rightarrow g$ types.
- So, such transition is known as charge transfer transitions.
- Such transition has more intensity and has higher ϵ values (1000 cm⁻¹).

(b) Mixed orbital transitions

- > Tetrahedral complexes do not have centre of symmetry.
- In such cases, there are optimum chances of having combination between d and p orbitals.
- Now electrons transit from d → mixed orbitals and hence it is orbital and symmetry allowed (Δl = ±1 and g → ug).
- > So, it will be laporte allowed transition that yield intense absorption band.

Absorption spectrum of Ti³⁺

- > The aqueous solution of TiCl₃ yields $[Ti(H_2O)_6]^{3+}$
- > When radiation passes through solution, certain wavelength absorbed.
- > Electron transits from lower energy levels to higher.
 - > Plot of A or ϵ versus wavelength or wave number will be as follows.

Position of absorption band

Position of absorption band is found 2000 to 12500 Å.

Position of maxima or peak

A clear peak is found at 4920 Å which is uv region so colour of complex is light violet.

Position of shoulder

Apart from main peak, one shoulder is found at 5740 Å.

Explanation

- > Electronic configuration of Ti^{3+} is [Ar] $3d^1$.
- \succ The spectral term is ²D.
- > $[Ti(H_2O)_6]^{3+}$ is octahedral complex.
- > The energy of t2g decreases and energy of eg increases.
- > Now due to Jahn-Teller effect the orbitals split again.
- > The transitions are found as below.

$2Eg \rightarrow 2B1g$	4920 Å main peak
	•

- $2Eg \rightarrow 2A1g \qquad 5740 \text{ Å shoulder peak}$
- $2Eg \rightarrow 2B2g$ Peak does not observed

Absorption spectrum of Cu²⁺

- > Cu^{2+} in aqueous solution exist as $[Cu(H_2O)_6]^{2+}$ and blue in colour.
- > It represents d9 system.

- > According to hole-formalism the splitting pattern is reversed in case of d^1 and d^9 .
- > The spectral term is 2 D.

Range and intensity of absorption spectrum

- > Absorption spectrum of $[Cu(H_2O)_6]^{2+}$ is between 15000 to 20000 cm⁻¹.
- > Spectrum is asymmetric and broad.
- > It represents $d \rightarrow d$ transition and that is laporte forbidden transition.

Position of maxima and peak

- \blacktriangleright Position of maxima is at 13000 cm⁻¹.
- > Shoulder is at 11000 cm^{-1} .
- > Spectral term 2 D splits into Eg and T2g.
- ➤ Energy of Eg decreases and energy of T2g increases.

Absorption spectrum of Ni²⁺

- > Ni^{2+} exist as $[Ni(H_2O)_6]^{2+}$ and green in colour.
- ▶ Range of spectrum is 50000 to 8000 cm⁻¹
- > Main peak is at 25300 cm^{-1} .
- > Shoulder peak is at 14500 cm^{-1} .
- > The spectral terms for d8 system are ${}^{3}F$, ${}^{3}P$, ${}^{1}D$ and ${}^{1}S$.
- > 3 F is ground state term and 3 P is term for next excited term.

 $3A_{2g} \rightarrow 3T_{1g} (F)$ 25300 cm⁻¹ $3A_{2g} \rightarrow 3T_{1g} (P)$ 14500 cm⁻¹ $3A_{2g} \rightarrow 3T_{2g} (F)$ 8700 cm⁻¹

Important Questions

- Explain Jahn-Teller effect in detail.
- Explain Orgel diagram.
- > Explain Laporte rule.
- > Explain absorption spectra on Ni²⁺, Cu²⁺ and Ti³⁺.
- > Explain hole formalism.

I have work hard preparing this material..... You also work hard preparing from this material!!!!

Best Luck