Student Learning Outcomes of B.Sc. (Mathematics) Programme

- \star Upon successful completion of B.Sc. (Mathematics) Programme the students will :
 - have developed important analytical skills and problem solving strategies to solved various problems and issues in Mathematics and other related fields.
 - be able to formulate mathematical reasoning to developed solutions in scientific fields.
 - be prepared for any area of employment that requires peoples with clear and logical thinking.

★ Upon successful completion of Analytic Geometry and Complex Numbers (US01CMTH01) students will be able to

- Learn sketching of various curves.
- Concepts of Asymptotes and various types of Asymptotes
- Understand the application of Cycloid.
- Learn to find parametric equations of curves.
- Understand polar coordinates and its relationship with cartesian coordinates.
- Understand symmetry of various curves in polar coordinate system.
- Learns polar equations of straight lines and conics.
- Apply the concept of reciprocal curves.
- Learns concept of complex numbers.
- Learns De'Movire's theorem and its application in finding out n^{th} root of a complex number.
- Understand the Fundamental Theorem of Algebra and use it to find multiple roots of an equation and their multiplicity.

 \bigstar Upon successful completion of Calculus and Differential equations (US01CMTH02) students will be able to

- Calculate higher order derivatives and algebraic and trigonometric functions.
- Use Libnitz's theorem to find higher order derivatives of product functions.
- Understand the curvature and radius of curvature along with their relevance with derivatives.
- Rectify a curve in various coordinate systems.
- Find relation between the length of the arc measured from a fixed point and the angle between the tangent and the radius vector at a point on a curve.
- differentiate composite and implicit functions.
- understand partial derivatives.
- understand homogeneous function and prove Euler's theorem along useful corollaries.
- learn applications of Euler's theorems for two and three variables.
- understand limit and continuity of two variables.
- Understand linear differential equations with constant coefficients and solve them.
- learn to find orthogonal trajectories in cartesian coordinates.

 \bigstar Upon successful completion of Problems and Exercises in Mathematics (US01CMTH03) students will be able to :

• Understand the idea of limit by using L'Hospital's rule ,Angles between two curves ,Radius of curvature and Arc length of the curves ,Intrinsic equation and its Applications .

- Sketch Cartesian curve, parametric curves, polar curves and reciprocal curves .
- Verify Euler's theorem on homogeneous functions .
- Obtain Maxima and minima for a function of two variables
- Find Taylor's expansion of functions and Orthogonal trajectories of a family of curves

• Solve Exact Differential equations and Differential equations of the first order but not of first degree

• Understand Algebra of complex numbers and its properties

 \bigstar Upon successful completion of Analytic Solid Geometry (US02CMTH01) students will be able to :

- Find centre and radius of Sphere and circles
- Find family of spheres Passing through a circle , tangent planes and normal lines to a sphere.
- Identify different conicoids and sketch them

• Understand relationship between different coordinate systems and plot the curve in Spherical,cylindrical polar coordinates .

• Understand Jacobian and its importance in Mathematics .

• Obtain equation of Cone , enveloping cone , cylinder , right circular cylinder , enveloping cylinder and prove their results .

• Find equation of tangent plane, reciprocal cone of given cone .

 \bigstar Upon successful completion of Matrix Algebra and Differential Equations (US02CMTH02) students will be able to :

- perform algebraic operations on matrices.
- reversal laws (for products), distributive law and associative law for matrices.
- prove theorems on unique representations of square matrices in terms of symmetric and skew-symmetric matrices or Hermitian and Skew-Hermitian matrices and apply them to a given matrix for such representations.
- define characteristic equation of a matrix and find the equation for a given matrix.
- prove Cayley-Hamilton theorem and verify it for a given square matrix.
- define and find characteristic roots and corresponding vectors of of a square matrix and find them for a given square matrix.
- construct an orthogonal matrix with the help of a real skew symmetric matrix.
- define linear differential equation with constant coefficients and its complementary function and particular integral.
- prove the existence of general solution of linear differential equation with constant coefficients.
- find complementary function using auxiliary equation.
- derive formula for finding particular integrals of f(D)y = X, where X is a function of x.
- derive formula for finding particular integrals of $f(D)y = e^{mx}$
- solve linear differential equations f(D)y = X where X involves e^{mx} only.
- derive working rules for finding particular integral of f(D)y = X where X = sinmx, cosmx, x^m , $e^{ax}V$, xV (where V is a function of x only)
- solve a linear differential equations of the form f(D)y = X, where X involves $\sin mx$, $\cos mx$, e^mx , x^m , $e^{ax}V$ or xV (where V is a function of x only).
- define homogeneous linear differential equation and solve such equations.

 \bigstar Upon successful completion of Problems and Exercises in Mathematics (US02CMTH03) students will be able to :

- Obtain Integration of rational function and linear surd .
- Evaluate integration of trigonometric functions of higher degree by Reduction formulae .
- Obtain Solution of System of linear homogeneous and non homogeneous algebraic equations.
- Application of Descarte's rule of sign.
- Find Solution of equations by Cardan's method , Ferarri's method.
- Find equation of conic section such as Spheres , Cone and Cylinder.
- Sketch Quadric surfaces .
- Find Rank and Normal form of matrix , Inverse of a nonsingular matrix , Eigenvalue and Eigenvector of matrix .
- Find General solution of Linear differential equations .

 \star Upon successful completion of Advanced Calculus (US03CMTH01), students will be able to:

- Evaluation of Line , Double integral ,Triple integrals and Change of variables in integral.
- Apply double and triple integral to find Area , Volume , Total mass , Centre of gravity and Moment of inertia.
- Understand to the Change the order of integration in double integral.
- Prove Green's theorem and different forms of Green's theorem and apply it to find line integral.
- Express equation of Surface in Cartesian and Parametric forms .
- Obtain Tangent plane and Normal line to the surface.
- Evaluate Area of a surface , Surface integrals and Moment of inertia of surface.
- Prove Gauss and Stoke's theorem and apply them to find surface integral and line integral .

 \bigstar Upon successful completion of Numerical Analysis (US03CMTH02), students will be able to:

- Learn various numerical methods to solve algebraic and transcendental equations.
- Understands forward, backward and central differences and relationships between them.
- Learns interpolation with equally spaced points and applies various interpolation formulas to interpolate a given data.
- Learns interpolation with unequally spaced points and applies various interpolation formulas to interpolate a given data.
- Learns divided difference and its properties and uses Newton's formula to for interpolation.
- Learns numerical differentiation and able to use various numerical methods to find differentiation.
- Understands various methods of numerical integration.
- Able to solve ordinary differential equation using various numerical methods.

 \bigstar Upon successful completion of Mathematics Practical (US03CMTH03), students will be able to :

- Find Inherent Errors , truncated errors and Errors in a series approximation.
- Understand Interpolation by different methods and apply them properly.
- Find Numerical differentiation and integration by different methods .
- Find Solution of algebraic and transcendental equations by different methods.

• Find Numerical solution of ordinary differential equations by Solution by Taylor's series and other different methods .

• Analyze Boolean algebra ,Simplify Switching circuits.

 \bigstar Upon successful completion of Calculus (US03EMTH01), students will be able to :

- Prove result for Convergence of improper integrals and Comparison tests for convergence .
- Evaluate integrals by Beta and Gamma functions .
- Analyze Beta and Gamma functions and their properties
- Find Gradient and Directional derivatives of scalar field , divergence and curl of a vector field
- Prove important results of divergence and curl of a vector field.
- Analyze Fourier series and its applications
- Understand Euler formulae and it's evaluation .
- Find Half range expansions of Periodic functions .

 \bigstar Upon successful completion of Calculus and Algebra - 1 (US03EMTH05), students will be able to :

- Identify Indeterminate forms and evaluate limits by L'Hospital's rule .
- Find Partial derivatives of first and second order
- Prove Euler's theorem on homogeneous functions and its application
- Understand Different types of matrices and their properties .
- Prove Reversal law for the transpose of a product
- Prove Associative and Distributive law for matrix multiplication
- Find Characteristic matrix and characteristic equation of a matrix
- Prove Cayley- Hamilton theorem and its application .

 \star Upon successful completion of Linear Algebra (US04CMTH01), students will be able to :

- Analyze Vector spaces and subspaces over a field and their properties
- Understand Span of a set and it's Properties .

• Analyze Linear dependence and independence of sets and their properties together with examples .

- Find Dimension and basis of a vector space and Prove their properties
- Analyze Linear Transformations and their properties .
- Determine Matrix associated with a linear map and Linear map associated with a Matrix .

 \bigstar Upon successful completion of Differential Equations (US04CMTH02), students will be able to :

- Understand the curves and surfaces in three dimensions.
- Solve simultaneous equation using various methods.
- able to find orthogonal trajectories of a system of curves.
- solve Paffian differential equation in two and three variables.
- understand the formation of partial differential equation and able to solve a linear differential equation of first order.
- able to find surfaces orthogonal to a given system of surfaces and integral surfaces to a given curve.
- understand first order non-liner partial differential equation.
- Understands compatible equations and find their solutions.
- Learn the Chrarpit's method to solve a given non-linear partial differential equation.
- Solve partial differential equations with variable coefficients.

 \bigstar Upon successful completion of Mathematics Practical (US04CMTH03), students will be able to :

- Recognition of the properties of functions from their graphs and converse .
- Prove some important theorem with a ruler and compass only .
- Verify different geometric results .
- Analyze different properties of Conics , Polyhedra,Cylinder and Cone .
- Make Model of Regular Polyhedra from drawing sheet and String Construction .
- Analyze properties of Solid surfaces and other models.

 \bigstar Upon successful completion of Boolean Algebra and Laplace Transforms (US04EMTH01), students will be able to :

- Understand Boolean algebra , its Properties and its to switching circuits.
- Find Solution of algebraic and transcendental equations by different methods .

• Understand Laplace transform and Inverse transforms of elementary functions and Prove their Properties .

- Find differentiation and integration of Laplace transform and converse .
- Prove Shifting Property for inverse Laplace transforms.
- Evaluate integral by convolution theorem .

 \bigstar Upon successful completion of Calculus and Algebra - 2 (US04EMTH05), students will be able to :

• Evaluate Maxima and Minima for a function of two variables .

• Evaluate Gradient and Directional derivative of scalar field ,Divergence and Curl of vectors fields and Prove their Properties .

- Find Tangent and normal plane to a surface
- Understand Boolean algebra and Simplify Boolean function
- Analyze Application of Boolean algebra to switching circuits.

- \star Upon successful completion of Real Analysis I (US05CMTH01), students will be able to :
 - understand fundamentals like bounded sets, supremum, infimum, Order Completeness of a field and Archimedean property.
 - accept the existence of irrational number with logical proof and Order incompleteness of the field of rational numbers.
 - learn properties absolute values and apply the same in various situations.
 - understand fundamental properties of exponential and logarithmic functions.
 - understand fundamental properties of trigonometric and inverse trigonometric functions.
 - understand concepts like neighbourhood of a point, interior point, interior of a set, open set and prove various theorems regarding properties of open sets.
 - understand limit point of a set, adherent point, closure of a set and closed set and prove various theorems regarding closed sets and their relation with open sets.
 - recognize interior points, limit points, open sets and closed sets.
 - define limit of a function and prove theorems on limits.
 - apply definition and theorems to evaluate limits.
 - define continuous functions and various theorem on continuity.
 - understand continuous functions on closed and bounded intervals and their properties.
 - Define uniformly continuous functions and identify such functions.
 - Learn about derivable functions and their properties.
 - Conceptualize relation of monotonic functions with the signs of their derivatives.
 - Prove Darboux's theorem for derivable functions.
- ★ Upon successful completion of Real Analysis-II (US05CMTH02) students will be able to
 - define sequence, convergence, limit of a sequence, limit point of a sequence and evaluate limits of certain class of sequences.
 - prove Bolzano-Weierstrass theorem for existence of limit point of a sequence.
 - prove Cauchy's general principle of convergence of a sequence and algebra of sequences.
 - apply Cauchy's general principle to determine whether a sequence is convergent or not.
 - define monotonic sequence and prove theorem for their convergence.
 - understand various types of divergence of sequence.
 - define infinite series, its convergence and divergence and prove various theorems on their convergence.
 - prove theorems on Comparison tests, Cauchy's root test and D'Alembert ratio test for positive term series and apply the tests.
 - Define function of several variables and understand their explicit and implicit forms.
 - Define simultaneous limit and repeated limits and continuity of a function.
 - Define and evaluate partial derivatives of functions of several variables.
 - prove Taylor's theorem and Maclaurin's theorem for function of two variables
 - define extreme values and prove theorems on extreme values.
 - evaluate maxima and minima of functions of two variables.

 \star Upon successful completion of Metric Spaces (US05CMTH03) students will be able to

- define a metric space and various special metric spaces and determine whether a function is a metric or not.
- define limit and continuity of a function and prove corresponding theorems.
- define open balls, interior points, open sets and closed sets.
- prove theorems on open and closed sets and various conditions for continuity of a function.
- define subspace and their open and closed sets.
- define connectedness of a space and prove its relation with Heine-Borel property.
- define bounded and totally bounded sets and understand their relations.
- define complete metric and compact metric space and prove corresponding theorems.
- prove theorems on continuous functions on compact spaces.
- define uniform continuity and prove theorem on uniform continuity and compact spaces.

 \bigstar Upon successful completion of Abstract Algebra - 1 (USO5CMTH04), students will be able to :

• Analyze Group , Cyclic group ,Normal subgroup ,Quotient groups , Simple group , Commutator subgroup , Isomorphism , Automorphism , Homomorphism and their properties .

• Understand Lagrange's , Euler's , Fermat's , Cayley's , First , second and third isomorphism theorem and its application .

- Understand Direct products and prove its properties .
- Analyze Permutation groups and its properties .

 \bigstar Upon successful completion of Number Theory (USO5CMTH05), students will be able to :

- Analyze Divisibility ,GCD , LCM and Prime numbers and their Properties
- Prove Fundamental theorem of divisibility and Unique factorization theorem .
- Identify Perfect numbers ,Mersenne numbers ,Fermat numbers ,Gauss function , Mobius function ,Euler's function and prove their Properties .
- Analyze Congruences ,Complete residue system , Reduced residue system and their Properties.
- Solve indeterminate equation , Linear congruence in one unknown and two unknown.
- Understand Chinese theorem and its applications .

 \bigstar Upon successful completion of Mechanics - 1 (USO5CMTH06), students will be able to :

- Understand Ingredients of mechanics and their properties
- Understand Fundamental laws of Newtonian mechanics
- Analyze equilibrium of a particle , systems of particles and their properties

• Understand Couples , work and potential energy , principle of virtual work , mass center and center of gravity , gravitational potential and their results .

 \bullet Understand Flexible cables in contact with smooth and rough curve , kinematics of a particle , motion of a rigid body parallel to a plane and their results .

 \bigstar Upon successful completion of Maths Practical-I (US05CMTH07) students will be able to :

- download and install Scilab.
- understand the commandline computing environment of SCILAB and use some of its most basic commands.
- perform arithmetic operations and inbuilt functions and interpret their output mathematically.
- use operations on matrices and verify some theoretically established results.
- apply matric operations to solve a system of linear equations.

 \bigstar Upon successful completion of Mathematics Practical-II (US05CMTH08) students will be able to :

- use commands to draw graphs in two and three dimensions.
- draw graphs of functions and determine their asymptotes.
- draw statistical charts for a given set of data and interpret it.
- draw multiple graphs on same page for comparative study.

 \bigstar Upon successful completion of Mathematics Practical-III (US05CMTH09) students will be able to :

- find eigen values and corresponding vectors of a given matrix.
- solve equations using builtin commands.
- solve a system of equations.
- solve simple ordinary and partial differential equations using builtin commands.

 \star Upon successful completion of Real Analysis-III (US06CMTH01) students will be able to :

- prove Rolle's theorem, Langrange's mean value theorem and Cauchy's Mean Value theorem.
- apply Rolle's theorem, Langrange's mean value theorem and Cauchy's Mean Value theorems to functions satisfying their respective conditions.
- prove Taylor's and Maclaurin's theorems and apply them to functions satisfying their respective conditions.
- define extreme values and prove theorems related to conditions for extreme values.
- investigate a given function for extreme values and evaluate them for extreme values.
- define and evaluate Upper Integral,Lower Integral and Riemann Integrals
- define refinement of a partition and prove results showing its consequences on lower and upper sums.
- prove Darboux's theorem for integrals.
- prove various necessary and sufficient conditions for Riemann Integrability of a function.
- prove and apply results related to sum, difference, product, quotient and modulus of integrable functions.
- define Riemann Integral as a limit of Riemann Sum and prove necessary and sufficient condition for integrability.
- prove theorems on integrability of continuous functions, monotonic functions and functions having only a finite number of limit points of set of points of discontinuities.

 \bigstar Upon successful completion of Complex Analysis (USO6CMTH02) students will be able to :

 \bullet Understand Limits , Continuity , Differentiability , Cauchy-Riemann equations and their properties .

• Prove Sufficient conditions for analyticity of function .

• Analyze Analytic , harmonic , exponential,Trigonometric , hyperbolic , Logarithmic , Inverse trigonometric , Inverse hyperbolic functions and prove their properties .

 \bullet Understand Linear , 1/z , Linear fractional , exponential , Trigonometric transformations and their properties .

 \bigstar Upon successful completion of Topology (US06CMTH03) students will be able to :

- define a topological space, a topology, open set and closed sets.
- verify whether a given collection is a topology or not.
- define trivial and non-trivial topologies and prove some results regarding their properties.
- define finer, coarser and door topologies and neighbourhood of a point.
- define a cluster point and closure of a set and prove results related to relation between closure and closed sets.
- define dense set, inter point and interior of a set and prove results related to interior and open sets.
- define continuity of a function and homeomorphism and prove related theorems.
- define connected and disconnected spaces and prove necessary and sufficient conditions for connectedness.
- define subspaces and respective open sets and prove the results for connectedness of subspaces.
- define Hausdorff space, open covering and compact space and prove theorems on compactness.
- prove a theorem related to compactness and Heine-Borel property.
- prove theorem on consequences of compact domain on continuous functions.
- define T_1 -space, regular space, T_3 -space and metric topology and prove theorems on them.

 \bigstar Upon successful completion of Abstract Algebra - 2 (USO6CMTH04) students will be able to :

• Analyze Rings , Integrals domains , Fields , Ideals , prime ideals , maximal ideals ,Quotient fields , quotient rings,Homomorphism , isomorphism and their properties .

• Understand Factorization , Associates elements ,Irreducible element , Euclidean domain , Principal ideal domain ,Unique Factorization domain , Polynomial rings and their properties .

• Prove First isomorphism theorem, Eisenstein's criterion and Gauss theorem .

 \star Upon successful completion of Graph Theory (US06CMTH05) students will be able to :

- define a graph in general and understand its applications to various fields.
- define isomorphism between two graphs, connected graphs, disconnected graphs and components.
- prove results on maximum number of edges in a simple graph.
- define and apply various operations on a graph.
- define Euler line and Euler graph and prove necessary and sufficient conditions for a graph to be an Euler graph.
- define Hamiltonian paths, circuits and trees and results related to properties of a tree.
- define distance between two vertices in a tree, center, radius and diameter and prove that distance in a tree is a metric.
- define spanning tree and corresponding fundamental circuits and fundamental cut-sets and prove related theorems.
- define connectivity and separability of a graph and prove related results.
- understand first and second isomorphisms.
- define planar graphs and non-planar graphs and understand Kuratowski's two graphs.
- define and find geometric dual of a planar graph and prove results related to geometric duals.
- prove Euler's theorem for planar graphs and apply the theorem to show that Kuratowski's two graphs are non-planar.

 \bigstar Upon successful completion of Mechanics - 2 (USO6CMTH06) students will be able to :

• Understand Methods of plane dynamics , motion of a particle and system of particles and their properties .

• Analyze projectile with and without resistance , Motion under central force , planetary orbits and their properties .

• Find Kinetic energy , angular momentum , moment of inertia of a rigid body and prove their properties .

 \bullet Understand Rotational motion about a fixed line , impulsive motion , collision and their properties .

 \bigstar Upon successful completion of Mathematics Practical-I (US06CMTH07) students will be able to :

- download and install MAXIMA/SAGE and understand its computing environments.
- define symbolic variables and perform simple symbolic calculations.
- define symbolic functions and basic operations on them.
- find limit, derivative and integral of a given function.
- determine convergence and divergence of sequence and series.

 \bigstar Upon successful completion of Mathematics Practical-II (US06CMTH08) students will be able to :

- understand and use basic programing constructs and use them to program user defined functions.
- define and use functions to determine whether a given number is natural, prime or composite.
- define a function to evaluate e^x , **Cosine** and **Sine** functions using infinite series.

 \bigstar Upon successful completion of Mathematics Practical-III (US06CMTH09) students will be able to :

- determine logical flow for solving a simple mathematical problem.
- write programs to find primes between two numbers, to determine whether a number is palindrome or not, to find gcd and lcm, to find all the factors of a natural number, to determine whether a given number is perfect or not and to approximate a real root of an equation using bisection method.

 \bigstar Upon successful completion of B.Sc. (Mathematics) Programme the students will :

- have developed important analytical skills and problem solving strategies to solved various problems and issues in Mathematics and other related fields.
- be able to formulate mathematical reasoning to developed solutions in scientific fields.
- be prepared for any area of employment that requires peoples with clear and logical thinking.